A comparison of the climate and carbon cycle effects of carbon removal by afforestation and an equivalent reduction in fossil fuel emissions

Author:

Jayakrishnan Koramanghat UnnikrishnanORCID,Bala GovindasamyORCID

Abstract

Abstract. Afforestation and reduction of fossil fuel emissions are two major components of climate mitigation policies. However, their effects on the Earth's climate are different because a reduction of fossil fuel emissions directly alters the biogeochemical cycle of the climate system and modifies the physics of the atmosphere via its impact on radiation and the energy budget, while afforestation causes biophysical changes in addition to changes in the biogeochemical cycle. In this paper, we compare the climate and carbon cycle consequences of carbon removal by afforestation and an equivalent fossil fuel emission reduction using simulations from an intermediate complexity Earth system model. We performed two major sets of idealized simulations in which fossil fuel emissions follow extended Shared Socioeconomic Pathway (SSP) scenarios (SSP2-4.5, 3-7.0, and 5-8.5), and equal amounts of carbon are removed by afforestation in one set and by a reduction in fossil fuel emissions in another set. Our simulations show that the climate is cooler by 0.36, 0.47, and 0.42 ∘C in the long term (2471–2500) in the case of reduced fossil fuel emissions compared to the case with afforestation when the emissions follow the SSP2-4.5, SSP3-7.0, and SSP5-8.5 scenarios, respectively. The global mean surface temperature is cooler in the reduced fossil fuel emissions case compared to the afforestation case because the net biophysical effect of warming from afforestation partly offsets the biogeochemical cooling effect of afforestation. Thus, in terms of climate benefits, reducing fossil fuel emissions could be relatively more beneficial than afforestation for the same amount of carbon removed from the atmosphere. However, a robust understanding of the processes that govern the biophysical effects of afforestation should be improved before considering our results for climate policy.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3