An improved land biosphere module for use in the DCESS Earth system model (version 1.1) with application to the last glacial termination

Author:

Eichinger RolandORCID,Shaffer Gary,Albarrán Nelson,Rojas Maisa,Lambert FabriceORCID

Abstract

Abstract. Interactions between the land biosphere and the atmosphere play an important role for the Earth's carbon cycle and thus should be considered in studies of global carbon cycling and climate. Simple approaches are a useful first step in this direction but may not be applicable for certain climatic conditions. To improve the ability of the reduced-complexity Danish Center for Earth System Science (DCESS) Earth system model DCESS to address cold climate conditions, we reformulated the model's land biosphere module by extending it to include three dynamically varying vegetation zones as well as a permafrost component. The vegetation zones are formulated by emulating the behaviour of a complex land biosphere model. We show that with the new module, the size and timing of carbon exchanges between atmosphere and land are represented more realistically in cooling and warming experiments. In particular, we use the new module to address carbon cycling and climate change across the last glacial transition. Within the constraints provided by various proxy data records, we tune the DCESS model to a Last Glacial Maximum state and then conduct transient sensitivity experiments across the transition under the application of explicit transition functions for high-latitude ocean exchange, atmospheric dust, and the land ice sheet extent. We compare simulated time evolutions of global mean temperature, pCO2, atmospheric and oceanic carbon isotopes as well as ocean dissolved oxygen concentrations with proxy data records. In this way we estimate the importance of different processes across the transition with emphasis on the role of land biosphere variations and show that carbon outgassing from permafrost and uptake of carbon by the land biosphere broadly compensate for each other during the temperature rise of the early last deglaciation.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3