Optimizing the parameterization of deep mixing and internal seiches in one-dimensional hydrodynamic models: a case study with Simstrat v1.3

Author:

Gaudard Adrien,Schwefel RobertORCID,Vinnå Love RåmanORCID,Schmid MartinORCID,Wüest Alfred,Bouffard DamienORCID

Abstract

Abstract. This paper presents an improvement of a one-dimensional lake hydrodynamic model (Simstrat) to characterize the vertical thermal structure of deep lakes. Using physically based arguments, we refine the transfer of wind energy to basin-scale internal waves (BSIWs). We consider the properties of the basin, the characteristics of the wind time series and the stability of the water column to filter and thereby optimize the magnitude of wind energy transferred to BSIWs. We show that this filtering procedure can significantly improve the accuracy of modelled temperatures, especially in the deep water of lakes such as Lake Geneva, for which the root mean square error between observed and simulated temperatures was reduced by up to 40 %. The modification, tested on four different lakes, increases model accuracy and contributes to a significantly better reproduction of seasonal deep convective mixing, a fundamental parameter for biogeochemical processes such as oxygen depletion. It also improves modelling over long time series for the purpose of climate change studies.

Publisher

Copernicus GmbH

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3