Response of OH airglow emissions to mesospheric gravity waves and comparisons with full-wave model simulation at a low-latitude Indian station
-
Published:2016-05-04
Issue:9
Volume:16
Page:5611-5621
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Ghodpage Rupesh N., Hickey Michael P., Taori Alok K.ORCID, Siingh Devendraa, Patil Parashram T.
Abstract
Abstract. Quasi-monochromatic gravity-wave-induced oscillations, monitored using the mesospheric OH airglow emission over Kolhapur (16.8° N, 74.2° E), India, during January to April 2010 and January to December 2011, have been characterized using the Krassovsky method. The nocturnal variability reveals prominent wave signatures with periods ranging from 5.2 to 10.8 h as the dominant nocturnal wave with embedded short-period waves having wave periods of 1.5–4.4 h. The results show that the magnitude of the Krassovsky parameter, viz. |η|, ranged from 2.1 to 10.2 h for principal or long nocturnal waves (5.2–10.8 h observed periods), and from 1.5 to 5.4 h for the short waves (1.5–4.4 h observed periods) during the years of 2010 and 2011, respectively. The phase (i.e., Φ) values of the Krassovsky parameters exhibited larger variability and varied from −8.1 to −167°. The deduced mean vertical wavelengths are found to be approximately −60.2 ± 20 and −42.8 ± 35 km for long- and short-period waves for the year 2010. Similarly, for 2011 the mean vertical wavelengths are found to be approximately −77.6 ± 30 and −59.2 ± 30 km for long and short wave periods, respectively, indicating that the observations over Kolhapur were dominated by upward-propagating waves. We use a full-wave model to simulate the response of OH emission to the wave motion and compare the results with observed values.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference57 articles.
1. Aushev, V. M., Lyahov, V. V., Lopez-Gonzalez, M. J., Shepherd, M. G., and Dryna, E. A.: Solar eclipse of the 29 March 2006: results of the optical measurements by MORTI over Almaty (43.03° N, 76.58° E), J. Atmos. Sol. Terr. Phys., 70, 1088–1101, 2008. 2. Bruce, G. H., Peaceman, D. W., Rachford Jr., H. H., and Rice, J. D.: Calculations of unsteady-state gas flow through porous media, Petrol. Trans. AIME, 198, 79–92, 1953. 3. Bittner, M., Offermann, D., and Graef, H. H.: Mesopause temperature variability above a midlatitude station in Europe, J. Geophys. Res., 105, 2045–2058, 2000. 4. Drob, D. P.: Ground-based optical detection of atmospheric waves in the upper mesosphere and lower thermosphere, Ph. D. Thesis, University of Michigan, Ann Arbor, MI, 1996. 5. Ghodpage, R. N., Singh, D., Singh, R. P., Mukherjee, G. K., Vohat, P., and Singh, A. K.: Tidal and gravity waves study from the airglow measurements at Kolhapur (India), J. Earth Syst. Sci., 121, 1511–1525, 2012.
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|