Are BVOC exchanges in agricultural ecosystems overestimated? Insights from fluxes measured in a maize field over a whole growing season

Author:

Bachy Aurélie,Aubinet Marc,Schoon Niels,Amelynck Crist,Bodson Bernard,Moureaux Christine,Heinesch BernardORCID

Abstract

Abstract. Although maize is the second most important crop worldwide, and the most important C4 crop, no study on biogenic volatile organic compounds (BVOCs) has yet been conducted on this crop at ecosystem scale and over a whole growing season. This has led to large uncertainties in cropland BVOC emission estimations. This paper seeks to fill this gap by presenting, for the first time, BVOC fluxes measured in a maize field at ecosystem scale (using the disjunct eddy covariance by mass scanning technique) over a whole growing season in Belgium. The maize field emitted mainly methanol, although exchanges were bi-directional. The second most exchanged compound was acetic acid, which was taken up mainly in the growing season. Bi-directional exchanges of acetaldehyde, acetone and other oxygenated VOCs also occurred, whereas the terpenes, benzene and toluene exchanges were small, albeit significant. Surprisingly, BVOC exchanges were of the same order of magnitude on bare soil and on well developed vegetation, suggesting that soil is a major BVOC reservoir in agricultural ecosystems. Quantitatively, the maize BVOC emissions observed were lower than those reported in other maize, crops and grasses studies. The standard emission factors (SEFs) estimated in this study (231 ± 19 µg m−2 h−1 for methanol, 8 ± 5 µg m−2 h−1 for isoprene and 4 ± 6 µg m−2 h−1 for monoterpenes) were also much lower than those currently used by models for C4 crops, particularly for terpenes. These results suggest that maize fields are small BVOC exchangers in north-western Europe, with a lower BVOC emission impact than that modelled for growing C4 crops in this part of the world. They also reveal the high variability in BVOC exchanges across world regions for maize and suggest that SEFs should be estimated for each region separately.

Funder

Fonds De La Recherche Scientifique - FNRS

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3