Characterizing Uncertainties in Atmospheric Inversions of Fossil Fuel CO<sub>2</sub> Emissions in California

Author:

Brophy KieranORCID,Graven Heather,Manning Alistair J.,White EmilyORCID,Arnold Tim,Fischer Marc L.,Jeong Seongeun,Cui Xinguang,Rigby MatthewORCID

Abstract

Abstract. Atmospheric inverse modelling has become an increasingly useful tool for evaluating emissions of greenhouse gases including methane, nitrous oxide and synthetic gases such as hydrofluorocarbons (HFCs). Atmospheric inversions for emissions of CO2 from fossil fuel combustion (ffCO2) are currently being developed. The aim of this paper is to investigate potential errors and uncertainties related to the spatial and temporal prior representation of emissions and modelled atmospheric transport for the inversion of ffCO2 emissions in the U.S. state of California. We perform simulation experiments based on a network of ground-based observations of CO2 concentration and radiocarbon in CO2 (a tracer of ffCO2), combining prior (bottom-up) emission models and transport models currently used in many atmospheric studies. The potential effect of errors in the spatial and temporal distribution of prior emission estimates is investigated in experiments by using perturbed versions of the emissions estimates used to create the pseudo data. The potential effect of transport error was investigated by using three different atmospheric transport models for the prior and pseudo data simulations. We find that the magnitude of biases in posterior state-total emissions arising from errors in the spatial and temporal distribution in prior emissions in these experiments are 1–15 % of posterior state-total emissions, and generally smaller than the 2-σ uncertainty in posterior emissions. Transport error in these experiments introduces biases of −10 % to +6 % in posterior state-total emissions. Our results indicate that uncertainties in posterior state-total ffCO2 estimates arising from the choice of prior emissions or atmospheric transport model are on the order of 15 % or less for the ground-based network in California we consider. We highlight the need for temporal variations to be included in prior emissions, and for continuing efforts to evaluate and improve the representation of atmospheric transport for regional ffCO2 inversions.

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3