Reconstruction of the track and a simulation of the storm surge associated with the calamitous typhoon affecting the Pearl River Estuary in September 1874

Author:

Mok Hing Yim,Lui Wing HongORCID,Lau Dick Shum,Woo Wang Chun

Abstract

Abstract. A typhoon struck the Pearl River Estuary in September 1874 (“Typhoon 1874”), causing extensive damage and claiming thousands of lives in the region during its passage. Like many other historical typhoons, the deadliest impact of the typhoon was its associated storm surge. In this paper, a possible track of the typhoon was reconstructed through an analysis of the historical qualitative and quantitative weather observations in the Philippines, the northern part of the South China Sea, Hong Kong, Macao, and Guangdong recorded in various historical documents. The magnitudes of the associated storm surges and storm tides in Hong Kong and Macao were also quantitatively estimated using storm surge model and analogue astronomical tides based on the reconstructed track. The results indicated that the typhoon could have crossed the Luzon Strait from the western North Pacific and moved across the northeastern part of the South China Sea to strike the Pearl River Estuary more or less as a super typhoon in the early morning on 23 September 1874. The typhoon passed about 60 km south–southwest of Hong Kong and made landfall in Macao, bringing maximum storm tides of around 4.9 m above the Hong Kong Chart Datum (http://www.geodetic.gov.hk/smo/gsi/Data/pdf/explanatorynotes.pdf, last access: 3 January 2020) at the Victoria Harbour in Hong Kong and around 5.4 m above the Macao Chart Datum (https://mosref.dscc.gov.mo/Help/ref/Macaucoord_2009_web_EN_v201702.pdf, last access: 3 January 2020) at Porto Interior (inner harbour) in Macao. Both the maximum storm tide (4.88 m above the Hong Kong Chart Datum) and maximum storm surge (2.83 m) brought by Typhoon 1874 at the Victoria Harbour estimated in this study are higher than all the existing records since the establishment of the Hong Kong Observatory in 1883, including the recent records set by super typhoon Mangkhut on 16 September 2018.

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Reference21 articles.

1. Arquivo Historico De Macao: The Times of Typhoon, Macao, China, 2014.

2. Atkinson, G. D. and Holliday, C. R.: Tropical Cyclone Minimum Sea Level Pressure/Maximum Sustained Wind Relationship for the Western North Pacific, Mon. Weather Rev., 105, 421–427, 1977.

3. China Mail: The China Mail published on 23 September 1874, Hong Kong, China, 1874.

4. García-Herrera, R., Ribera, P., Hernández, E., and Gimeno, L.: Typhoons in the Philippine Islands 1566–1900, available at: http://www.ucm.es/info/tropical/selga-i.html, last access: 3 January 2020.

5. Heywood, G. S. P.: Hong Kong Typhoons, Hong Kong Observatory, Hong Kong, China, 1950.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3