Microphysical particle properties derived from inversion algorithms developed in the framework of EARLINET

Author:

Müller D.ORCID,Böckmann C.ORCID,Kolgotin A.,Schneidenbach L.,Chemyakin E.,Rosemann J.,Znak P.,Romanov A.

Abstract

Abstract. We present a summary on the current status of two inversion algorithms that are used in EARLINET for the inversion of data collected with EARLINET multiwavelength Raman lidars. These instruments measure backscatter coefficients at 355, 532, and 1064 nm, and extinction coefficients at 355 and 532 nm. Development of these two algorithms started in 2000 when EARLINET was founded. The algorithms are based on manually controlled inversion of optical data which allows for detailed sensitivity studies and thus provides us with comparably high quality of the derived data products. The algorithms allow us to derive particle effective radius, and volume and surface-area concentration with comparably high confidence. The retrieval of the real and imaginary parts of the complex refractive index still is a challenge in view of the accuracy required for these parameters in climate change studies in which light-absorption needs to be known with high accuracy. Single-scattering albedo can be computed from the retrieved microphysical parameters and allows us to categorize aerosols into high and low absorbing aerosols. We discuss the current status of these manually operated algorithms, the potentially achievable accuracy of data products, and the goals for future work on the basis of a few exemplary simulations with synthetic optical data. The optical data used in our study cover a range of Ångström exponents and extinction-to-backscatter (lidar) ratios that are found from lidar measurements of various aerosol types. We also tested aerosol scenarios that are considered highly unlikely, e.g., the lidar ratios fall outside the commonly accepted range of values measured with Raman lidar, even though the underlying microphysical particle properties are not uncommon. The goal of this part of the study is to test robustness of the algorithms toward their ability to identify aerosol types that have not been measured so far, but cannot be ruled out based on our current knowledge of aerosol physics. We computed the optical data from monomodal logarithmic particle size distributions, i.e., we explicitly excluded the more complicated case of bimodal particle size distributions which is a topic of ongoing research work. Another constraint is that we only considered particles of spherical shape in our simulations. We considered particle radii as large as 7–10 μm in our simulations. That particle size does not only cover the size range of particles in the fine-mode fraction of naturally occurring particle size distributions but also covers a considerable part of the coarse-mode fraction of particle size distributions. We considered optical-data errors of 15 % in the simulation studies. We target 50 % uncertainty as a reasonable threshold for our data products, though we attempt to obtain data products with less uncertainty in future work.

Funder

European Commission

Publisher

Copernicus GmbH

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3