A sensitivity study on the retrieval of aerosol vertical profiles using the oxygen A-band

Author:

Colosimo S. F.,Natraj V.,Sander S. P.,Stutz J.ORCID

Abstract

Abstract. Atmospheric absorption in the O2 A-band (12 950–13 200 cm−1) offers a unique opportunity to retrieve aerosol extinction profiles from space-borne measurements due to the large dynamic range of optical thickness in that spectral region. Absorptions in strong O2 lines are saturated; therefore, any radiance measured in these lines originates from scattering in the upper part of the atmosphere. Outside of O2 lines, or in weak lines, the atmospheric column absorption is small, and light penetrates to lower atmospheric layers, allowing for the quantification of aerosols and other scatterers near the surface. While the principle of aerosol profile retrieval using O2 A-band absorption from space is well known, a thorough quantification of the information content, i.e., the amount of vertical profile information that can be obtained, and the dependence of the information content on the spectral resolution of the measurements, has not been thoroughly conducted. Here, we use the linearized vector radiative transfer model VLIDORT to perform spectrally resolved simulations of atmospheric radiation in the O2 A-band in the presence of aerosol for four different generic scenarios: Urban, Highly polluted, Elevated layer, and Marine–Arctic. The high-resolution radiances emerging from the top of the atmosphere are degraded to different spectral resolutions, simulating spectrometers with different resolving powers. We use optimal estimation theory to quantify the information content in the aerosol profile retrieval with respect to different aerosol parameters and instrument spectral resolutions. The simulations show that better spectral resolution generally leads to an increase in the total amount of information that can be retrieved, with the number of degrees of freedom (DoF) varying between 0.34–2.11 at low resolution (5 cm−1) to 3.43–5.92 at high resolution (0.05 cm−1) for the four different cases. A particularly strong improvement was found in the retrieval of tropospheric aerosol extinction profiles in the lowest 5 km of the atmosphere. At high spectral resolutions (0.05 cm−1), 1.18–1.7 and 1.31–2.34 DoF can be obtained in the lower (0–2 km) and middle (2–5 km) troposphere, respectively, for the different cases. Consequently a separation of lower and mid tropospheric aerosols is possible, implying the feasibility of identification of elevated biomass burning aerosol plumes (Elevated layer scenario). We find that higher single scattering albedo (SSA) allows for the retrieval of more aerosol information. However, the dependence on SSA is weaker at higher spectral resolutions. The Marine (surface albedo 0.05) and Arctic (surface albedo 0.9) cases show that the dependence of DoF on the surface albedo decreases with higher resolution. While at low resolution (5 cm−1) the DoF is 1 for the Marine case and 0.34 for the Arctic case, the DoF considerably increase at 0.05 cm−1 resolution to 3.8 and 3.4, respectively. In the Arctic case this is an improvement of a factor of 10. The simulations also reveal a moderate dependence of information content on the integration time of the measurements, i.e., the noise of the spectra. However, our results indicate that a larger increase in DoF is obtained by an increase in spectral resolution despite lower signal-to-noise ratios.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3