Zeeman effect in atmospheric O<sub>2</sub> measured by ground-based microwave radiometry
Author:
Navas-Guzmán F.ORCID, Kämpfer N., Murk A., Larsson R.ORCID, Buehler S. A.ORCID, Eriksson P.ORCID
Abstract
Abstract. In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high resolution spectrometer (1 kHz) was used in order to measure for the first time the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere.
Funder
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
Publisher
Copernicus GmbH
Reference27 articles.
1. Buehler, S. A., Eriksson, P., Kuhn, T., Von Engeln, A., and Verdes, C.: ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93, 2005. 2. Christensen, H. and Veseth, L.: On the high-precision zeeman effect in O2 and \\chemSO, J. Mol. Spectrosc., 72, 438–444, 1978. 3. Del Toro Iniesta, J. C.: Introduction to Spectropolarimetry, Cambridge University Press, Cambridge, 2003. 4. Eriksson, P., Ekström, M., Melsheimer, C., and Buehler, S. A.: Efficient forward modelling by matrix representation of sensor responses, Int. J. Remote Sens., 27, 1793–1808, 2006. 5. Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, 2011.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|