Zeeman effect in atmospheric O<sub>2</sub> measured by ground-based microwave radiometry

Author:

Navas-Guzmán F.ORCID,Kämpfer N.,Murk A.,Larsson R.ORCID,Buehler S. A.ORCID,Eriksson P.ORCID

Abstract

Abstract. In this work we study the Zeeman effect on stratospheric O2 using ground-based microwave radiometer measurements. The interaction of the Earth magnetic field with the oxygen dipole leads to a splitting of O2 energy states which polarizes the emission spectra. A special campaign was carried out in order to measure this effect in the oxygen emission line centered at 53.07 GHz. Both a fixed and a rotating mirror were incorporated to the TEMPERA (TEMPERature RAdiometer) radiometer in order to be able to measure under different observational angles. This new configuration allowed us to change the angle between the observational path and the Earth magnetic field direction. Moreover, a high resolution spectrometer (1 kHz) was used in order to measure for the first time the Zeeman effect in the main isotopologue of oxygen from ground-based microwave measurements. The measured spectra showed a clear polarized signature when the observational angles were changed evidencing the Zeeman effect in the oxygen molecule. In addition, simulations carried out with the Atmospheric Radiative Transfer Simulator (ARTS) allowed us to verify the microwave measurements showing a very good agreement between model and measurements. The results suggest some interesting new aspects for research of the upper atmosphere.

Funder

Schweizerischer Nationalfonds zur F&#x00F6;rderung der Wissenschaftlichen Forschung

Publisher

Copernicus GmbH

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3