Zooplankton communities fluctuations from 1995 to 2005 in the Bay of Villefranche-sur-Mer (Northern Ligurian Sea, France)

Author:

Vandromme P.,Stemmann L.,Berline L.,Gasparini S.,Mousseau L.,Prejger F.,Passafiume O.,Guarini J.-M.,Gorsky G.

Abstract

Abstract. An integrated analysis of the pelagic ecosystems of the Ligurian Sea is performed combining time series of different zooplankton groups (small and large copepods, chaetognaths, appendicularians, pteropods, thaliaceans, decapods larvae, other crustaceans, other gelatinous and other zooplankton), chlorophyll-a and nutrients, seawater salinity, temperature and density and local weather at the Point B coastal station (Northern Ligurian Sea). From January 1995 to December 2005, a shift in most variables occurred ca. 2000. From 1995 to 2000 winters were wet and mild resulting in lower winter sea surface density. These years showed lower than average nutrients and zooplankton concentrations while phytoplankton biomass was higher. After 2000, winters were colder and dryer resulting in higher sea surface density. Nutrients and zooplankton showed higher concentrations while phytoplankton was lower than average. The ca. 2000 shift was observed for most zooplankton groups with a one year delay for certain groups. The observed patterns suggest that the pelagic ecosystem trophic state is mostly set by the winter forcing on the convection that upwells nutrients to the surface sustaining the spring bloom. However, low phytoplankton concentrations in higher nitrate and zooplankton conditions during the well mixed years suggest that phytoplankton is controlled by grazers. The proposed mechanisms of convection regimes hold for most of the time series, but specific years with contradicting patterns needed to be explained by other factors. The limitation of phytoplankton growth by the light availability in spring/summer was then proposed as a secondary driving force that can moderate or even reverse the winter forcing. Finally, the eleven years of observation did not reveal a clear link with the North Atlantic Oscillation, suggesting a more complex dynamics linking large scale climate to Ligurian Sea ecosystems or that the length of the plankton monitoring is not yet sufficient to detect those links.

Publisher

Copernicus GmbH

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3