Natural and anthropogenic methane fluxes in Eurasia: a meso-scale quantification by generalized atmospheric inversion

Author:

Berchet A.,Pison I.,Chevallier F.ORCID,Paris J.-D.,Bousquet P.,Bonne J.-L.,Arshinov M. Yu.ORCID,Belan B. D.ORCID,Cressot C.,Davydov D. K.,Dlugokencky E. J.,Fofonov A. V.,Galanin A.,Lavrič J.ORCID,Machida T.,Parker R.ORCID,Sasakawa M.,Spahni R.ORCID,Stocker B. D.ORCID,Winderlich J.

Abstract

Abstract. Eight surface observation sites providing quasi-continuous measurements of atmospheric methane mixing ratios have been operated since the mid-2000's in Siberia. For the first time in a single work, we assimilate all of these in situ data in an atmospheric inversion. Our objective is to quantify methane surface fluxes from anthropogenic and wetland sources at the meso-scale in the Siberian Lowlands for the year 2010. To do so, we first inquire into the way the inversion uses the observations and the fluxes are constrained by the observation sites. As atmospheric inversions at the meso-scale suffer from mis-quantified sources of uncertainties, we follow recent innovations in inversion techniques and use a new inversion approach which quantifies the uncertainties more objectively than the previous inversions. We find that, due to errors in the representation of the atmospheric transport and redundant pieces of information, only one observation every few days is found valuable by the inversion. The remaining high-resolution signals are representative of very local emission patterns. An analysis of the use of information by the inversion also reveals that the observation sites constrain methane emissions within a radius of 500 km. More observation sites are necessary to constrain the whole Siberian Lowlands. Still, the fluxes within the constrained areas are quantified with objectified uncertainties. At the end, the tolerance intervals for posterior methane fluxes are of roughly 20% (resp. 50%) of the fluxes for anthropogenic (resp. wetland) sources. About 50–70% of emissions are constrained by the inversion on average on an annual basis. Extrapolating the figures on the constrained areas to the whole Siberian Lowlands, we find a regional methane budget of 5–28 Tg CH4 for the year 2010, i.e. 1–5% of the global methane emissions. As very few in situ observations are available in the region of interest, observations of methane total columns from the Greenhouse Gas Observing SATellite (GOSAT) are used for the evaluation of the inversion results, but they exhibit marginal signal from the fluxes within the region of interest.

Publisher

Copernicus GmbH

Reference96 articles.

1. Amante, C. and Eakins, B. W.: ETOPO1 1 arc-minute global relief model: procedures, data sources and analysis, US Department of Commerce, National Oceanic and Atmospheric Administration, National Environmental Satellite, Data, and Information Service, National Geophysical Data Center, Marine Geology and Geophysics Division, Boulder, Colorado, 2009.

2. Arshinov, M. Y., Belan, B. D., Davydov, D. K., Inouye, G., Krasnov, O. A., Maksyutov, S., Machida, T., Fofonov, A. V., and Shimoyama, K.: Spatial and temporal variability of CO2 and CH4 concentrations in the surface atmospheric layer over West Siberia, Atmospheric and Oceanic Optics, 22, 84–93, 2009.

3. Berchet, A., Paris, J.-D., Ancellet, G., Law, K. S., Stohl, A., Nédélec, P., Arshinov, M. Y., Belan, B. D., and Ciais, P.: Tropospheric ozone over Siberia in spring 2010: remote influences and stratospheric intrusion, Tellus B, 65, 19688, https://doi.org/10.3402/tellusb.v65i0.19688, 2013a.

4. Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Conil, S., Geever, M., Laurila, T., Lavrič, J., Lopez, M., Moncrieff, J., Necki, J., Ramonet, M., Schmidt, M., Steinbacher, M., and Tarniewicz, J.: Towards better error statistics for atmospheric inversions of methane surface fluxes, Atmos. Chem. Phys., 13, 7115–7132, https://doi.org/10.5194/acp-13-7115-2013, 2013b.

5. Berchet, A., Pison, I., Chevallier, F., Bousquet, P., Bonne, J.-L., and Paris, J.-D.: Objectified quantification of uncertainties in Bayesian atmospheric inversions, Geosci. Model Dev. Discuss., 7, 4777–4827, https://doi.org/10.5194/gmdd-7-4777-2014, 2014.

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3