Abstract
Abstract. In topographically complex watersheds, landscape position and vegetation heterogeneity can alter the soil water regime through both lateral and vertical redistribution, respectively. These alterations of soil moisture may have significant impacts on the spatial heterogeneity of biogeochemical cycles throughout the watershed. To evaluate how landscape position and vegetation heterogeneity affect soil CO2 efflux (FSOIL) we conducted observations across the Weimer Run watershed (373 ha), located near Davis, West Virginia, for three growing seasons with varying precipitation (2010 – 1042 mm; 2011 – 1739 mm; 2012 – 1244 mm; precipitation data from BDKW2 station, MesoWest, University of Utah). An apparent soil temperature threshold of 11 °C at 12 cm depth on FSOIL was observed in our data – where FSOIL rates greatly increase in variance above this threshold. For analysis, FSOIL values above this threshold were isolated and examined. Differences in FSOIL among years were apparent by elevation (F4,633 = 3.17; p = 0.013) and by vegetation cover (F4, 633 = 2.96; p = 0.019). For the Weimer Run watershed, vegetation exerts the major control on soil CO2 efflux (FSOIL), with the plots beneath shrubs at all elevations for all years showing the greatest mean rates of FSOIL (6.07 μmol CO2 m-2 s-1) compared to plots beneath closed-forest canopy (4.69 μmol CO2 m-2 s-1) and plots located in open, forest gaps (4.09 μmol CO2 m-2 s-1) plots. During periods of high soil moisture, we find that CO2 efflux rates are constrained and that maximum efflux rates in this system occur during periods of average to below average soil water availability. These findings offer valuable insight into the processes occurring within these topographically complex, temperate and humid systems, and the interactions of abiotic and biotic factors mediating biogeochemical cycles. With possible changing rainfall patterns as predicted by climate models, it is important to understand the couplings between water and carbon cycling at the watershed and landscape scales, and their potential dynamics under global change scenarios.
Reference90 articles.
1. Ahlström, A., Schurgers, G., Arneth, A., and Smith, B.: Robustness and uncertainty in terrestrial ecosystem carbon response to CMIP5 climate change projections, Environ. Res. Lett., 7, 044008, https://doi.org/10.1088/1748-9326/7/4/044008, 2012.
2. Allard, H. A. and E. C. L.: The Canaan and Stony River Valleys of West Virginia, their former magnificent spruce forests, Castanea, 17, 1–60, 1952.
3. Atkins, J., Epstein, H. E., and Welsch, D. L.: Leaf-litter decomposition differs by vegetation cover along an elevation gradient in a West Virginia watershed, in preparation, 2014.
4. Bending, G. D. and Read, D. J.: Lignin and soluble phenolic degradation by ectomycorrhizal and ericoid mycorrhizal fungi, Mycol. Res., 101, 1348–1354, 1997.
5. Berg, B.: Litter decomposition and organic matter turnover in northern forest soils, Forest Ecol. Manag., 133, 13–22, https://doi.org/10.1016/S0378-1127(99)00294-7, 2000.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献