Biological productivity regime and associated N cycling in the vicinity of Kerguelen Island area, Southern Ocean

Author:

Cavagna A. J.,Fripiat F.,Elskens M.,Dehairs F.,Mangion P.,Chirurgien L.,Closset I.,Lasbleiz M.,Flores–Leiva L.,Cardinal D.,Leblanc K.,Fernandez C.,Lefèvre D.,Oriol L.,Blain S.,Quéguiner B.ORCID

Abstract

Abstract. Although the Southern Ocean is considered a High Nutrient Low Chlorophyll area (HNLC), massive and recurrent blooms are observed over and downstream the Kerguelen Plateau. This mosaic of blooms is triggered by a higher iron supply resulting from the interaction between the Antarctic Circumpolar Current and the local bathymetry. Net primary production, N-uptake (NO3− and NH4+), and nitrification rates were measured at 8 stations in austral spring 2011 (October–November) during the KEOPS2 cruise in the Kerguelen area. Iron fertilization stimulates primary production, with integrated net primary production and growth rates much higher in the fertilized areas (up to 315 mmol C m−2 d−1 and up to 0.31 d−1, respectively) compared to the HNLC reference site (12 mmol C m−2 d−1 and 0.06 d−1, respectively). Primary production is mainly sustained by nitrate uptake, with f ratio (corresponding to NO3− uptake/(NO3− uptake + NH4+ uptake)) lying in the upper end of the observations for the Southern Ocean (up to 0.9). Unexpectedly, we report unprecedented rates of nitrification (up to ~3 mmol C m−2 d−1, with ~90% of them <1 mmol C m−2 d−1). It appears that nitrate is assimilated in the upper part of the mixed layer (coinciding with the euphotic layer) and regenerated in the lower parts. We suggest that such high contribution of nitrification to nitrate assimilation is driven by (i) a deep mixed layer, extending well below the euphotic layer, allowing nitrifiers to compete with phytoplankton for the assimilation of ammonium, (ii) extremely high rates of primary production for the Southern Ocean, stimulating the release of dissolved organic matter, and (iii) an efficient food web, allowing the reprocessing of organic N and the retention of nitrogen into the dissolved phase through ammonium, the substrate for nitrification.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3