Spatial variability and temporal dynamics of greenhouse gas (CO<sub>2</sub>, CH<sub>4</sub>, N<sub>2</sub>O) concentrations and fluxes along the Zambezi River mainstem and major tributaries
Author:
Teodoru C. R., Nyoni F. C., Borges A. V.ORCID, Darchambeau F., Nyambe I., Bouillon S.ORCID
Abstract
Abstract. Spanning over 3000 km in length and with a catchment of approximately 1.4 million km2, the Zambezi River is the fourth largest river in Africa and the largest flowing into the Indian Ocean from the African continent. As part of a~broader study on the riverine biogeochemistry in the Zambezi River basin, we present data on greenhouse gas (GHG, carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O)) concentrations and fluxes collected along the Zambezi River, reservoirs and several of its tributaries during 2012 and 2013 and over two climatic seasons (dry and wet) to constrain the interannual variability, seasonality and spatial heterogeneity along the aquatic continuum. All GHGs concentrations showed high spatial variability (coefficient of variation: 1.01 for CO2, 2.65 for CH4 and 0.21 for N2O). Overall, there was no unidirectional pattern along the river stretch (i.e. decrease or increase towards the ocean), as the spatial heterogeneity of GHGs appeared to be determined mainly by the connectivity with floodplains and wetlands, and the presence of man-made structures (reservoirs) and natural barriers (waterfalls, rapids). Highest CO2 and CH4 concentrations in the mainstream river were found downstream of extensive floodplains/wetlands. Undersaturated CO2 conditions, in contrast, were characteristic for the surface waters of the two large reservoirs along the Zambezi mainstem. N2O concentrations showed the opposite pattern, being lowest downstream of floodplains and highest in reservoirs. Among tributaries, highest concentrations of both CO2 and CH4 were measured in the Shire River whereas low values were characteristic for more turbid systems such as the Luangwa and Mazoe rivers. The interannual variability in the Zambezi River was relatively large for both CO2 and CH4, and significantly higher concentrations (up to two fold) were measured during wet seasons compared to the dry season. Interannual variability of N2O was less pronounced but generally higher values were found during the dry season. Overall, both concentrations and fluxes of CO2 and CH4 were well below the median/average values reported for tropical rivers, streams and reservoirs. A first-order mass balance suggests that carbon (C) transport to the ocean represents the major component (59%) of the budget (largely in the form of DIC), while only 38% of total C yield is annually emitted into the atmosphere, mostly as CO2 (98%), and 3% is removed by sedimentation in reservoirs.
Publisher
Copernicus GmbH
Reference72 articles.
1. Abril, G., Martinez. J. M., Artigas, L. F., Moreira-Turcq. P., Benedetti, M. F., Vidal, L., Meziane, T., Kin, J. H., Bernardes, M. C., Savoye, N., Deborde, J., Souza, E. L., Albéric, P., Landim de Souza, M. F., and Roland, F.: Amazon River carbon dioxide outgassing fuelled by wetlands, Nature, 505, 395–398, https://doi.org/10.1038/nature12797, 2014a. 2. Abril, G., Bouillon, S., Darchambeau, F., Teodoru, C. R., Marwick, T. R., Tamooh, F., Omengo, F. O., Geeraert, N., Deirmendjian, L., Polsenaere, P., and Borges, A. V.: Technical Note: Large overestimation of pCO2 calculated from pH and alkalinity in acidic, organic-rich freshwaters, Biogeosciences Discuss., 11, 11701–11725, https://doi.org/10.5194/bgd-11-11701-2014, 2014b. 3. Amiotte-Suchet, P., Aubert, D., Probst, J. L., Gauthier-Lafaye, F., Probst, A., Andreux, F., and Viville, D.: δ13C pattern of dissolved inorganic carbon in a small granitic catchment: the Strengbach case study (Vosges mountains, France), Chem. Geol., 159, 129– 145, 1999. 4. Ashton, P. J., Love, D., Mahachi, H., and Dirks, P. H. G. M.: An overview of the impact of mining and mineral processing operations on water resources and water quality in the Zambezi, Limpopo and Olifants Catchments in Southern Africa. Contract Report to the Mining, Minerals and Sustainable Development (SOUTHERN AFRICA). Project by CSIR-Environmentek, Pretoria, South Africaand Geology Department, University of Zimbabwe, Harare, Zimbabwe, Rep. ENV-P-C 2001–042, 336 pp., available at: http://pubs.iied.org/pdfs/G00599.pdf (last access: 15 September 2014), 2001. 5. Aufdenkampe, E. K., Mayorga, E., Raymond, P. A., Melack, J. M., Doney, S. C., Alin, S. R., Aalto, R. E., and Yoo, K.: Rivers key to coupling biogeochemical cycles between land, oceans and atmosphere, Front. Ecol. Environ. 9, 53–60, https://doi.org/10.1890/100014, 2011.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|