Soil redistribution and weathering controlling the fate of geochemical and physical carbon stabilization mechanisms in soils of an eroding landscape

Author:

Doetterl S.ORCID,Cornelis J.-T.,Six J.ORCID,Bodé S.ORCID,Opfergelt S.,Boeckx P.,Van Oost K.

Abstract

Abstract. It has been suggested that eroding landscapes can form C sinks or sources, but the underlying mechanisms are not fully understood. Our analysis aims to clarify the effects of soil redistribution on physical and biogeochemical soil organic carbon (SOC) stabilization mechanisms along a hillslope transect. The observed mineralogical differences seem partly responsible for the effectiveness of geochemical and physical SOC stabilization mechanisms as the mineral environment along the transect is highly variable and dynamic. The abundance of primary and secondary minerals and the weathering status of the investigated soils differ drastically along this transect. Extractable iron and aluminum components are largely abundant in aggregates, but show no strong correlation to SOC, indicating their importance for aggregate stability but not for SOC retention. We further show that pyrophosphate extractable soil components, especially manganese, play a role in stabilizing SOC within non-aggregated mineral fractions. The abundance of microbial residues and measured 14C ages for aggregated and non-aggregated SOC fractions demonstrate the importance of the combined effect of geochemical and physical protection to stabilize SOC after burial at the depositional site. Mineral alteration and the breakdown of aggregates limit the protection of C by minerals and within aggregates temporally. The 14C ages of buried soil indicate that C in aggregated fractions seem to be preserved more efficiently while C in non-aggregated fractions is released, allowing a re-sequestration of younger C with this fraction. Old 14C ages and at the same time high contents of microbial residues in aggregates suggest that microorganisms either feed on old carbon to build up microbial biomass, or that these environments consisting of considerable amounts of old C are proper habitats for microorganisms and preserve their residues. Due to continuous soil weathering and, hence, weakening of protection mechanisms, a potential C sink through soil burial is finally temporally limited.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3