North Atlantic marine biogenic silica accumulation through the early to middle Paleogene: implications for ocean circulation and silicate weathering feedback

Author:

Witkowski JakubORCID,Bryłka Karolina,Bohaty Steven M.,Mydłowska Elżbieta,Penman Donald E.,Wade Bridget S.ORCID

Abstract

Abstract. The Paleogene history of biogenic opal accumulation in the North Atlantic provides insight into both the evolution of deepwater circulation in the Atlantic basin and weathering responses to major climate shifts. However, existing records are compromised by low temporal resolution and/or stratigraphic discontinuities. In order to address this problem, we present a multi-site, high-resolution record of biogenic silica (bioSiO2) accumulation from Blake Nose (ODP Leg 171B, western North Atlantic) spanning the early Paleocene to late Eocene time interval (∼65–34 Ma). This record represents the longest single-locality history of marine bioSiO2 burial compiled to date and offers a unique perspective into changes in bioSiO2 fluxes through the early to middle Paleogene extreme greenhouse interval and the subsequent period of long-term cooling. Blake Nose bioSiO2 fluxes display prominent fluctuations that we attribute to variations in sub-thermocline nutrient supply via cyclonic eddies associated with the Gulf Stream. Following elevated and pulsed bioSiO2 accumulation through the Paleocene to early Eocene greenhouse interval, a prolonged interval of markedly elevated bioSiO2 flux in the middle Eocene between ∼46 and 42 Ma is proposed to reflect nutrient enrichment at Blake Nose due to invigorated overturning circulation following an early onset of Northern Component Water export from the Norwegian–Greenland Sea at ∼49 Ma. Reduced bioSiO2 flux in the North Atlantic, in combination with increased bioSiO2 flux documented in existing records from the equatorial Pacific between ∼42 and 38 Ma, is interpreted to indicate diminished nutrient supply and reduced biosiliceous productivity at Blake Nose in response to weakening of the overturning circulation. Subsequently, in the late Eocene, a deepwater circulation regime favoring limited bioSiO2 burial in the Atlantic and enhanced bioSiO2 burial in the Pacific was established after ∼38 Ma, likely in conjunction with re-invigoration of deepwater export from the North Atlantic. We also observe that Blake Nose bioSiO2 fluxes through the middle Eocene cooling interval (∼48 to 34 Ma) are similar to or higher than background fluxes throughout the late Paleocene–early Eocene interval (∼65 to 48 Ma) of intense greenhouse warmth. This observation is consistent with a temporally variable rather than constant silicate weathering feedback strength model for the Paleogene, which would instead predict that marine bioSiO2 burial should peak during periods of extreme warming.

Funder

Narodowe Centrum Nauki

Publisher

Copernicus GmbH

Subject

Paleontology,Stratigraphy,Global and Planetary Change

Reference113 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3