Regional sources of airborne ultrafine particle number and mass concentrations in California

Author:

Yu Xin,Venecek Melissa,Kumar Anikender,Hu Jianlin,Tanrikulu Saffet,Soon Su-Tzai,Tran Cuong,Fairley David,Kleeman Michael J.

Abstract

Abstract. Regional concentrations and source contributions are calculated for airborne particle number concentration (Nx) and ultrafine particle mass concentration (PM0.1) in the San Francisco Bay Area (SFBA) and the South Coast Air Basin (SoCAB) surrounding Los Angeles with 4 km spatial resolution and daily time resolution for selected months in the years 2012, 2015, and 2016. Performance statistics for daily predictions of N10 concentrations meet the goals typically used for modeling of PM2.5 (mean fractional bias (MFB) < ±0.5 and mean fractional error (MFE) < 0.75). The relative ranking and concentration range of source contributions to PM0.1 predicted by regional calculations agree with results from receptor-based studies that use molecular markers for source apportionment at four locations in California. Different sources dominated regional concentrations of N10 and PM0.1 because of the different emitted particle size distributions and different choices for heating fuels. Nucleation (24 %–57 %) made the largest single contribution to N10 concentrations at the 10 regional monitoring locations, followed by natural gas combustion (28 %–45 %), aircraft (2 %–10 %), mobile sources (1 %–5 %), food cooking (1 %–2 %), and wood smoke (0 %–1 %). In contrast, natural gas combustion (22 %–52 %) was the largest source of PM0.1 followed by mobile sources (15 %–42 %), food cooking (4 %–14 %), wood combustion (1 %–12 %), and aircraft (2 %–6 %). The study region encompassed in this project is home to more than 25 million residents, which should provide sufficient power for future epidemiological studies on the health effects of airborne ultrafine particles. All of the PM0.1 and N10 outdoor exposure fields produced in the current study are available free of charge at http://webwolf.engr.ucdavis.edu/data/soa_v3/hourly_avg/ (last access: 20 November 2019).

Funder

California Air Resources Board

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3