Nepal emission inventory – Part I: Technologies and combustion sources (NEEMI-Tech) for 2001–2016

Author:

Sadavarte Pankaj,Rupakheti MaheswarORCID,Bhave Prakash,Shakya Kiran,Lawrence MarkORCID

Abstract

Abstract. The lack of a comprehensive, up-to-date emission inventory for the Himalayan region is a major challenge in understanding the extensive regional air pollution, including its causes, impacts and mitigation pathways. This study describes a high-resolution (1 km × 1 km) present-day emission inventory for Nepal, developed with a higher-tier approach. The complete study is divided into two parts; this paper covers technologies and combustion sources in residential, industrial, commercial, agricultural diesel-use and transport sectors as Part I (NEEMI-Tech), while emissions from the open burning of municipal waste and agricultural residue in fields and fugitive emissions from waste management, paddy fields, enteric fermentation and manure management for the period 2001–2016 will be covered in Part II (NEEMI-Open). The national total energy consumption (except hydropower, solar and wind energy) estimated in the base year 2011 was 374 PJ, with the residential sector being the largest energy consumer (79 %), followed by industry (11 %) and the transport sector (7 %). Biomass is the dominant energy source, contributing to 88 % of the national total energy consumption, while the rest is from fossil fuel. A total of 8.9 Tg of CO2, 110 Gg of CH4, 2.1 Gg of N2O, 64 Gg of NOx, 1714 Gg of CO, 407 Gg of NMVOCs, 195 Gg of PM2.5, 23 Gg of BC, 83 Gg of OC and 24 Gg of SO2 emissions were estimated in 2011 from the five energy-use sectors considered in NEEMI-Tech. The Nepal emission inventory provides, for the first time, temporal trends of fuel and energy consumption and associated emissions in Nepal for a long period, 2001–2016. The energy consumption showed an increase by a factor of 1.6 in 2016 compared to 2001, while the emissions of various species increased by a factor of 1.2–2.4. An assessment of the top polluting technologies shows particularly high emissions from traditional cookstoves and space-heating practices using biomass. In addition, high emissions were also computed from fixed-chimney Bull's trench kilns (FCBTKs) in brick production, cement kilns, two-wheeler gasoline vehicles, heavy-duty diesel freight vehicles and kerosene lamps. The monthly analysis shows December, January and February as periods of high PM2.5 emissions from the technology-based sources considered in this study. Once the full inventory including open burning and fugitive sources (Part II) is available, a more complete picture of the strength and temporal variability in the emissions and sources will be possible. Furthermore, the large spatial variation in the emissions highlights the pockets of growing urbanization, which emphasize the importance of the detailed knowledge about the emission sources that this study provides. These emissions will be of value for further studies, especially air-quality-modeling studies focused on understanding the likely effectiveness of air pollution mitigation measures in Nepal.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3