Multivariate statistical air mass classification for the high-alpine observatory at the Zugspitze Mountain, Germany
-
Published:2019-10-08
Issue:19
Volume:19
Page:12477-12494
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Sigmund Armin, Freier KorbinianORCID, Rehm Till, Ries LudwigORCID, Schunk Christian, Menzel Anette, Thomas Christoph K.ORCID
Abstract
Abstract. To assist atmospheric monitoring at high-alpine sites, a statistical approach for distinguishing between the dominant air masses was developed. This approach was based on a principal component analysis using five gas-phase and two meteorological variables. The analysis focused on the Schneefernerhaus site at Zugspitze Mountain, Germany. The investigated year was divided into 2-month periods, for which the analysis was repeated. Using the 33.3 % and 66.6 % percentiles of the first two principal components, nine air mass regimes were defined. These regimes were interpreted with respect to vertical transport and assigned to the BL (recent contact with the boundary layer), UFT/SIN (undisturbed free troposphere or stratospheric intrusion), and HYBRID (influences of both the boundary layer and the free troposphere or ambiguous) air mass classes. The input data were available for 78 % of the investigated year. BL accounted for 31 % of the cases with similar frequencies in all seasons. UFT/SIN comprised 14 % of the cases but was not found from April to July. HYBRID (55 %) mostly exhibited intermediate characteristics, whereby 17 % of the HYBRID class suggested an influence from the marine boundary layer or the lower free troposphere. The statistical approach was compared to a mechanistic approach using the ceilometer-based mixing layer height from a nearby valley site and a detection scheme for thermally induced mountain winds. Due to data gaps, only 25 % of the cases could be classified using the mechanistic approach. Both approaches agreed well, except in the rare cases of thermally induced uplift. The statistical approach is a promising step towards a real-time classification of air masses. Future work is necessary to assess the uncertainty arising from the standardization of real-time data.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference40 articles.
1. Ambrose, J., Reidmiller, D., and Jaffe, D.: Causes of high O3 in
the lower free troposphere over the Pacific Northwest as observed at the
Mt. Bachelor Observatory, Atmos. Environ., 45, 5302–5315,
https://doi.org/10.1016/j.atmosenv.2011.06.056, 2011. a, b 2. Balzani Lööv, J. M., Henne, S., Legreid, G., Staehelin, J., Reimann, S.,
Prévôt, A. S. H., Steinbacher, M., and Vollmer, M. K.: Estimation of
background concentrations of trace gases at the Swiss Alpine site
Jungfraujoch (3580 m asl), J. Geophys. Res.-Atmos.,
113, D22305, https://doi.org/10.1029/2007JD009751, 2008. a, b 3. Birmili, W., Weinhold, K., Rasch, F., Sonntag, A., Sun, J., Merkel, M., Wiedensohler, A., Bastian, S., Schladitz, A., Löschau, G., Cyrys, J., Pitz, M., Gu, J., Kusch, T., Flentje, H., Quass, U., Kaminski, H., Kuhlbusch, T. A. J., Meinhardt, F., Schwerin, A., Bath, O., Ries, L., Gerwig, H., Wirtz, K., and Fiebig, M.: Long-term observations of tropospheric particle number size distributions and equivalent black carbon mass concentrations in the German Ultrafine Aerosol Network (GUAN), Earth Syst. Sci. Data, 8, 355–382, https://doi.org/10.5194/essd-8-355-2016, 2016. a, b 4. Calvert, J. G.: Glossary of atmospheric chemistry terms (Recommendations
1990), Pure Appl. Chem., 62, 2167–2219, 1990. a 5. Flentje, H., Heese, B., Reichardt, J., and Thomas, W.: Aerosol profiling using the ceilometer network of the German Meteorological Service, Atmos. Meas. Tech. Discuss., 3, 3643–3673, https://doi.org/10.5194/amtd-3-3643-2010, 2010. a
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|