Variability in vertical structure of precipitation with sea surface temperature over the Arabian Sea and the Bay of Bengal as inferred by Tropical Rainfall Measuring Mission precipitation radar measurements

Author:

Saikranthi KadiriORCID,Radhakrishna Basivi,Narayana Rao Thota,Satheesh Sreedharan Krishnakumari

Abstract

Abstract. Tropical Rainfall Measuring Mission (TRMM) precipitation radar measurements are used to examine the variation in vertical structure of precipitation with sea surface temperature (SST) over the Arabian Sea (AS) and Bay of Bengal (BOB). The variation in reflectivity and precipitation echo top with SST is remarkable over the AS but small over the BOB. The reflectivity increases with SST (from 26 to 31 ∘C) by ∼1 and 4 dBZ above and below 6 km, respectively, over the AS, while its variation is <0.5 dBZ over the BOB. The transition from shallow storms at lower SSTs (≤27 ∘C) to deeper storms at higher SSTs is strongly associated with the decrease in stability and mid-tropospheric wind shear over the AS. In contrary, the storms are deeper at all SSTs over the BOB due to weaker stability and mid-tropospheric wind shear. At lower SSTs, the observed high aerosol optical depth (AOD) and low total column water (TCW) over AS results in the small cloud effective radius (CER) and weaker reflectivity. As SST increases, AOD decreases and TCW increases, leading to a large CER and high reflectivity. The changes in these parameters with SST are marginal over the BOB and hence the CER and reflectivity. The predominance of collision–coalescence process below the bright band is responsible for the observed negative slopes in the reflectivity over both the seas. The observed variations in reflectivity originate at the cloud formation stage over both the seas, and these variations are magnified during the descent of hydrometeors to the ground.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3