Summertime surface PM<sub>1</sub> aerosol composition and size by source region at the Lampedusa island in the central Mediterranean Sea

Author:

Mallet Marc D.,D'Anna BarbaraORCID,Même Aurélie,Bove Maria Chiara,Cassola Federico,Pace Giandomenico,Desboeufs Karine,Di Biagio ClaudiaORCID,Doussin Jean-FrancoisORCID,Maille Michel,Massabò Dario,Sciare Jean,Zapf Pascal,di Sarra Alcide Giorgio,Formenti PaolaORCID

Abstract

Abstract. Measurements of aerosol composition and size distributions were taken during the summer of 2013 at the remote island of Lampedusa in the southern central Mediterranean Sea. These measurements were part of the ChArMEx/ADRIMED (Chemistry and Aerosol Mediterranean Experiment/Aerosol Direct Radiative Forcing on the Mediterranean Climate) framework and took place during Special Observation Period 1a (SOP-1a) from 11 June to 5 July 2013. From compact time-of-flight aerosol mass spectrometer (cToF-AMS) measurements in the size range below 1 µm in aerodynamic diameter (PM1), particles were predominately comprised of ammonium and sulfate. On average, ammonium sulfate contributed 63 % to the non-refractory PM1 mass, followed by organics (33 %). The organic aerosol was generally very highly oxidized (f44 values were typically between 0.25 and 0.26). The contribution of ammonium sulfate was generally higher than organic aerosol in comparison to measurements taken in the western Mediterranean but is consistent with studies undertaken in the eastern basin. Source apportionment of organics using a statistical (positive matrix factorization) model revealed four factors: a hydrocarbon-like organic aerosol (HOA), a methanesulfonic-acid-related oxygenated organic aerosol (MSA-OOA), a more oxidized oxygenated organic aerosol (MO-OOA) and a less oxidized oxygenated organic aerosol (LO-OOA). The MO-OOA was the dominant factor for most of the campaign (53 % of the PM1 OA mass). It was well correlated with SO42-, highly oxidized and generally more dominant during easterly air masses originating from the eastern Mediterranean and central Europe. The LO-OOA factor had a very similar composition to the MO-OOA factor but was more prevalent during westerly winds, with air masses originating from the Atlantic Ocean, the western Mediterranean and at high altitudes over France and Spain from mistral winds. The MSA-OOA factor contributed an average 12 % to the PM1 OA and was more dominant during the mistral winds. The HOA, representing observed primary organic aerosol, only contributed 8 % of the average PM1 OA during the campaign. Even though Lampedusa is one of the most remote sites in the Mediterranean, PM1 concentrations (10 ± 5 µg m−3) were comparable to those observed in coastal cities and sites closer to continental Europe. Cleaner conditions corresponded to higher wind speeds. Nucleation and growth of new aerosol particles was observed during periods of north-westerly winds. From a climatology analysis from 1999 to 2012, these periods were much more prevalent during the measurement campaign than during the preceding 13 years. These results support previous findings that highlight the importance of different large-scale synoptic conditions in determining the regional and local aerosol composition and oxidation and also suggest that a non-polluted surface atmosphere over the Mediterranean is rare.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference91 articles.

1. Aiken, A. C., Decarlo, P. F., Kroll, J. H., Worsnop, D. R., Huffman, J. A., Docherty, K. S., Ulbrich, I. M., Mohr, C., Kimmel, J. R., and Sueper, D.: O∕C and OM&thinsp;∕&thinsp;OC ratios of primary, secondary, and ambient organic aerosols with high-resolution time-of-flight aerosol mass spectrometry, Environ. Sci. Technol., 42, 4478–4485, 2008.

2. Allan, J. D., Jimenez, J. L., Williams, P. I., Alfarra, M. R., Bower, K. N., Jayne, J. T., Coe, H., and Worsnop, D. R.: Quantitative sampling using an Aerodyne aerosol mass spectrometer 1.  Techniques of data interpretation and error analysis, J. Geophys. Res.-Atmos., 108, 4090, https://doi.org/10.1029/2002JD002358, 2003.

3. Amato, F., Alastuey, A., Karanasiou, A., Lucarelli, F., Nava, S., Calzolai, G., Severi, M., Becagli, S., Gianelle, V. L., Colombi, C., Alves, C., Custódio, D., Nunes, T., Cerqueira, M., Pio, C., Eleftheriadis, K., Diapouli, E., Reche, C., Minguillón, M. C., Manousakas, M.-I., Maggos, T., Vratolis, S., Harrison, R. M., and Querol, X.: AIRUSE-LIFE+: a harmonized PM speciation and source apportionment in five southern European cities, Atmos. Chem. Phys., 16, 3289–3309, https://doi.org/10.5194/acp-16-3289-2016, 2016.

4. Ancellet, G., Pelon, J., Totems, J., Chazette, P., Bazureau, A., Sicard, M., Di Iorio, T., Dulac, F., and Mallet, M.: Long-range transport and mixing of aerosol sources during the 2013 North American biomass burning episode: analysis of multiple lidar observations in the western Mediterranean basin, Atmos. Chem. Phys., 16, 4725–4742, https://doi.org/10.5194/acp-16-4725-2016, 2016.

5. Arndt, J., Sciare, J., Mallet, M., Roberts, G. C., Marchand, N., Sartelet, K., Sellegri, K., Dulac, F., Healy, R. M., and Wenger, J. C.: Sources and mixing state of summertime background aerosol in the north-western Mediterranean basin, Atmos. Chem. Phys., 17, 6975–7001, https://doi.org/10.5194/acp-17-6975-2017, 2017.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3