Transport of the 2017 Canadian wildfire plume to the tropics via the Asian monsoon circulation
-
Published:2019-11-07
Issue:21
Volume:19
Page:13547-13567
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Kloss Corinna, Berthet GwenaëlORCID, Sellitto PasqualeORCID, Ploeger Felix, Bucci SilviaORCID, Khaykin Sergey, Jégou FabriceORCID, Taha GhassanORCID, Thomason Larry W.ORCID, Barret Brice, Le Flochmoen Eric, von Hobe MarcORCID, Bossolasco Adriana, Bègue Nelson, Legras BernardORCID
Abstract
Abstract. We show that a fire plume injected into the lower stratosphere at high northern latitudes during the Canadian wildfire event in August 2017 partly reached the tropics. The transport to the tropics was mediated by the anticyclonic flow of the Asian monsoon circulation. The fire plume reached the Asian monsoon area in late August/early September, when the Asian monsoon anticyclone (AMA) was still in place. While there is no evidence of mixing into the center of the AMA, we show that a substantial part of the fire plume is entrained into the anticyclonic flow at the AMA edge and is transported from the extratropics to the tropics, and possibly the Southern Hemisphere particularly following the north–south flow on the eastern side of the AMA. In the tropics the fire plume is lifted by ∼5 km in 7 months. Inside the AMA we find evidence of the Asian tropopause aerosol layer (ATAL) in August, doubling background aerosol conditions with a calculated top of the atmosphere shortwave radiative forcing of −0.05 W m−2. The regional climate impact of the fire signal in the wider Asian monsoon area in September exceeds the impact of the ATAL by a factor of 2–4 and compares to that of a plume coming from an advected moderate volcanic eruption. The stratospheric, trans-continental transport of this plume to the tropics and the related regional climate impact point to the importance of long-range dynamical interconnections of pollution sources.
Funder
Agence Nationale de la Recherche Deutsche Forschungsgemeinschaft Deloitte Foundation
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference66 articles.
1. Abalos, M., Legras, B., Ploeger, F., and Randel, W. J.: Evaluating the
advective Brewer-Dobson circulation in three reanalyses for the period
1979–2012, J. Geophys. Res., 120, 7534–7554, https://doi.org/10.1002/2015JD023182,
2015. a, b 2. Anderson, G., Clough, S., Kneizys, F., and Shettle, E.: AFGL Atmospheric
Constituent Profiles (0.120 km), AFGL Environmental Research Papers,
1–46, available at: https://apps.dtic.mil/dtic/tr/fulltext/u2/a175173.pdf (last access: 11 March 2019),
1986. a 3. Ansmann, A., Baars, H., Chudnovsky, A., Mattis, I., Veselovskii, I., Haarig,
M., Seifert, P., Engelmann, R., and Wandinger, U.: Extreme levels of Canadian
wildfire smoke in the stratosphere over central Europe on 21–22 August 2017,
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, 2018. a, b 4. Bhartia, P. K. and Torres, O. O.: OMPS-NPP L2 LP Aerosol Extinction Vertical Profile swath daily 3slit V1.5, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), https://doi.org/10.5067/GZJJYA7L0YW2, last access: 22 Februar 2019. a, b 5. Barret, B., Le Flochmoen, E., Sauvage, B., Pavelin, E., Matricardi, M., and
Cammas, J. P.: The detection of post-monsoon tropospheric ozone variability
over south Asia using IASI data, Atmos. Chem. Phys., 11, 9533–9548,
https://doi.org/10.5194/acp-11-9533-2011, 2011. a, b
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|