Modeling the aerosol chemical composition of the tropopause over the Tibetan Plateau during the Asian summer monsoon

Author:

Ma JianzhongORCID,Brühl Christoph,He Qianshan,Steil Benedikt,Karydis Vlassis A.,Klingmüller KlausORCID,Tost HolgerORCID,Chen Bin,Jin Yufang,Liu Ningwei,Xu Xiangde,Yan Peng,Zhou Xiuji,Abdelrahman Kamal,Pozzer AndreaORCID,Lelieveld JosORCID

Abstract

Abstract. Enhanced aerosol abundance in the upper troposphere and lower stratosphere (UTLS) associated with the Asian summer monsoon (ASM) is referred to as the Asian Tropopause Aerosol Layer (ATAL). The chemical composition, microphysical properties, and climate effects of aerosols in the ATAL have been the subject of discussion over the past decade. In this work, we use the ECHAM/MESSy Atmospheric Chemistry (EMAC) general circulation model at a relatively fine grid resolution (about 1.1×1.1∘) to numerically simulate the emissions, chemistry, and transport of aerosols and their precursors in the UTLS within the ASM anticyclone during the years 2010–2012. We find a pronounced maximum of aerosol extinction in the UTLS over the Tibetan Plateau, which to a large extent is caused by mineral dust emitted from the northern Tibetan Plateau and slope areas, lofted to an altitude of at least 10 km, and accumulating within the anticyclonic circulation. We also find that the emissions and convection of ammonia in the central main body of the Tibetan Plateau make a great contribution to the enhancement of gas-phase NH3 in the UTLS over the Tibetan Plateau and ASM anticyclone region. Our simulations show that mineral dust, water-soluble compounds, such as nitrate and sulfate, and associated liquid water dominate aerosol extinction in the UTLS within the ASM anticyclone. Due to shielding of high background sulfate concentrations outside the anticyclone from volcanoes, a relative minimum of aerosol extinction within the anticyclone in the lower stratosphere is simulated, being most pronounced in 2011, when the Nabro eruption occurred. In contrast to mineral dust and nitrate concentrations, sulfate increases with increasing altitude due to the larger volcano effects in the lower stratosphere compared to the upper troposphere. Our study indicates that the UTLS over the Tibetan Plateau can act as a well-defined conduit for natural and anthropogenic gases and aerosols into the stratosphere.

Funder

National Natural Science Foundation of China

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

全球学者库

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"全球学者库"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前全球学者库共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2023 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3