The MetVed model: development and evaluation of emissions from residential wood combustion at high spatio-temporal resolution in Norway

Author:

Grythe HenrikORCID,Lopez-Aparicio SusanaORCID,Vogt Matthias,Vo Thanh Dam,Hak Claudia,Halse Anne Karine,Hamer Paul,Sousa Santos Gabriela

Abstract

Abstract. We present here emissions estimated from a newly developed emission model for residential wood combustion (RWC) at high spatial and temporal resolution, which we name the MetVed model. The model estimates hourly emissions resolved on a 250 m grid resolution for several compounds, including particulate matter (PM), black carbon (BC) and polycyclic aromatic hydrocarbons (PAHs) in Norway for a 12-year period. The model uses novel input data and calculation methods that combine databases built with an unprecedented high level of detail and near-national coverage. The model establishes wood burning potential at the grid based on the dependencies between variables that influence emissions: i.e. outdoor temperature, number of and type and size of dwellings, type of available heating technologies, distribution of wood-based heating installations and their associated emission factors. RWC activity with a 1 h temporal profile was produced by combining heating degree day and hourly and weekday activity profiles reported by wood consumers in official statistics. This approach results in an improved characterisation of the spatio-temporal distribution of wood use, and subsequently of emissions, required for urban air quality assessments. Whereas most variables are calculated based on bottom-up approaches on a 250 m spatial grid, the MetVed model is set up to use official wood consumption at the county level and then distributes consumption to individual grids proportional to the physical traits of the residences within it. MetVed combines consumption with official emission factors that makes the emissions also upward scalable from the 250 m grid to the national level. The MetVed spatial distribution obtained was compared at the urban scale to other existing emissions at the same scale. The annual urban emissions, developed according to different spatial proxies, were found to have differences up to an order of magnitude. The MetVed total annual PM2.5 emissions in the urban domains compare well to emissions adjusted based on concentration measurements. In addition, hourly PM2.5 concentrations estimated by an Eulerian dispersion model using MetVed emissions were compared to measurements at air quality stations. Both hourly daily profiles and the seasonality of PM2.5 show a slight overestimation of PM2.5 levels. However, a comparison with black carbon from biomass burning and benzo(a)pyrene measurements indicates higher emissions during winter than that obtained by MetVed. The accuracy of urban emissions from RWC relies on the accuracy of the wood consumption (activity data), emission factors and the spatio-temporal distribution. While there are still knowledge gaps regarding emissions, MetVed represents a vast improvement in the spatial and temporal distribution of RWC.

Funder

NordForsk

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference41 articles.

1. Aasestad, K.: Vedforbruk, fyringsvaner og svevestøv Dokumentasjon og resultater fra undersøkelse i Drammen 2006/2007 Statistics Norway, Oslo, Norway, ISBN 978-82-537-7823-5, 2010. a, b, c

2. ACAP: Reduction of Black Carbon Emissions from Residential Wood Combustion in the Arctic – Black Carbon Inventory, Abatement Instruments and Measures. Arctic Contaminants Action Program (ACAP), Oslo, Norway, ISBN 978-82-999755-1-3, 164 pp., 2014. a, b

3. Andersson, S., Arvelius, J., Brodl, L., Verbova, M., Ortiz, C., Jonsson, M., Svanström, S., Gerner, A., Danielsson, H., and Yaramenka, K.: Metod- och kvalitetsbeskrivning för geografiskt fördelade emissioner till luft (submission 2018). SMED Rapport Nr10 2018, Sveriges Meteorologiska och Hydrologiska Institut, Norrköping, Sweden, 2015. a

4. Bloch, V. V. H.: Registerbasert boligstatistikk, Dokumentasjon og videre arbeid. 2018/2 Statistcs Norway ISBN 978-82-537-9676-5, available at: http://www.ssb.no/natur-og-miljo, last access: 9 December 2018. a

5. Denby, B.: Source-Receptor and Inverse Modelling to quantify urban PARTiculate emissions (SRIMPART). Nordic Council of Ministers, Copenhagen, Denmark, 2009. a

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3