Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016
-
Published:2019-10-14
Issue:19
Volume:19
Page:12779-12795
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Jeong DaunORCID, Seco RogerORCID, Gu DasaORCID, Lee Youngro, Nault Benjamin A.ORCID, Knote Christoph J.ORCID, Mcgee Tom, Sullivan John T.ORCID, Jimenez Jose L.ORCID, Campuzano-Jost PedroORCID, Blake Donald R., Sanchez Dianne, Guenther Alex B.ORCID, Tanner David, Huey L. GregoryORCID, Long Russell, Anderson Bruce E., Hall Samuel R., Ullmann KirkORCID, Shin Hye-jungORCID, Herndon Scott C.ORCID, Lee Youngjae, Kim DanbiORCID, Ahn Joonyoung, Kim Saewung
Abstract
Abstract. Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea–United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4–5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by ∼25 % in the morning.
Funder
National Aeronautics and Space Administration
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference100 articles.
1. Atkinson, R.: Gas-Phase Tropospheric Chemistry of Volatile Organic Compounds:
1. Alkanes and Alkenes, J. Phys. Chem. Ref. Data, 26, 215–290,
https://doi.org/10.1063/1.556012, 1997. a 2. Atkinson, R. and Arey, J.: Gas-phase tropospheric chemistry of biogenic
volatile organic compounds: A review, Atmos. Environ., 37, 197–219,
https://doi.org/10.1016/S1352-2310(03)00391-1, 2003. a 3. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I – gas phase reactions of Ox, HOx, NOx and SOx species, Atmos. Chem. Phys., 4, 1461–1738, https://doi.org/10.5194/acp-4-1461-2004, 2004. a 4. Atkinson, R., Baulch, D. L., Cox, R. A., Crowley, J. N., Hampson, R. F., Hynes, R. G., Jenkin, M. E., Rossi, M. J., and Troe, J.: Evaluated kinetic and photochemical data for atmospheric chemistry: Volume III – gas phase reactions of inorganic halogens, Atmos. Chem. Phys., 7, 981–1191, https://doi.org/10.5194/acp-7-981-2007, 2007. a 5. Baasandorj, M., Hoch, S. W., Bares, R., Lin, J. C., Brown, S. S., Millet,
D. B., Martin, R., Kelly, K., Zarzana, K. J., Whiteman, C. D., Dube, W. P.,
Tonnesen, G., Jaramillo, I. C., and Sohl, J.: Coupling between Chemical and
Meteorological Processes under Persistent Cold-Air Pool Conditions: Evolution
of Wintertime PM2.5 Pollution Events and N2O5 Observations in
Utah's Salt Lake Valley, Environ. Sci. Technol., 51, 5941–5950,
https://doi.org/10.1021/acs.est.6b06603, 2017. a, b
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|