An emulator approach to stratocumulus susceptibility
-
Published:2019-08-13
Issue:15
Volume:19
Page:10191-10203
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Glassmeier FranziskaORCID, Hoffmann FabianORCID, Johnson Jill S., Yamaguchi Takanobu, Carslaw Ken S.ORCID, Feingold GrahamORCID
Abstract
Abstract. The climatic relevance of aerosol–cloud interactions depends on the sensitivity of the radiative effect of clouds to cloud droplet number N, and liquid water path LWP.
We derive the dependence of cloud fraction CF, cloud albedo AC, and the relative cloud radiative effect rCRE=CF⋅AC on N and LWP from 159 large-eddy simulations of nocturnal stratocumulus.
These simulations vary in their initial conditions for temperature, moisture, boundary-layer height, and aerosol concentration but share boundary conditions for surface fluxes and subsidence.
Our approach is based on Gaussian-process emulation, a statistical technique related to machine learning.
We succeed in building emulators that accurately predict simulated values of CF, AC, and rCRE for given values of N and LWP.
Emulator-derived susceptibilities ∂lnrCRE/∂lnN and ∂lnrCRE/∂lnLWP cover the nondrizzling, fully overcast regime as well as the drizzling regime with broken cloud cover.
Theoretical results, which are limited to the nondrizzling regime, are reproduced.
The susceptibility ∂lnrCRE/∂lnN captures the strong sensitivity of the cloud radiative effect to cloud fraction, while the susceptibility ∂lnrCRE/∂lnLWP describes the influence of cloud amount on cloud albedo irrespective of cloud fraction.
Our emulation-based approach provides a powerful tool for summarizing complex data in a simple framework that captures the sensitivities of cloud-field properties over a wide range of states.
Funder
Natural Environment Research Council National Research Council Royal Society
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference46 articles.
1. Ackerman, A. S., vanZanten, M. C., Stevens, B., Savic-Jovcic, V., Bretherton,
C. S., Chlond, A., Golaz, J.-C., Jiang, H., Khairoutdinov, M., Krueger,
S. K., Lewellen , D. C., Lock, A., Moeng, C.-H., Nakamura, K., Petters, M. D., Snider, J. R., Weinbrecht, S., and Zulauf, M.: Large-Eddy Simulations of a Drizzling,
Stratocumulus-Topped Marine Boundary Layer, Mon. Weather Rev., 137,
1083–1110, https://doi.org/10.1175/2008mwr2582.1, 2009. a 2. Albrecht, B. A.: Aerosols, Cloud Microphysics, and Fractional Cloudiness,
Science, 245, 1227–1230, https://doi.org/10.1126/science.245.4923.1227, 1989. a 3. Beven, K.: A manifesto for the equifinality thesis, J. Hydrol., 320, 18–36,
https://doi.org/10.1016/j.jhydrol.2005.07.007, 2005. a 4. Boers, R. and Mitchell, R. M.: Absorption feedback in stratocumulus clouds
Influence on cloud top albedo, Tellus A, 46, 229–241, https://doi.org/10.3402/tellusa.v46i3.15476, 1994. a, b, c 5. Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S., Sherwood, S., Stevens, B., and Zhang, X.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis, Contribution of Working
Group I to IPCC AR5, edited by: Stocker, T. F., Qin, D., Plattner, G.-K.,
Tignor, M., Allen, S., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P., Cambridge, https://doi.org/10.1017/CBO9781107415324, 2013. a
Cited by
28 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|