Retrieval of total column and surface NO<sub>2</sub> from Pandora zenith-sky measurements
-
Published:2019-08-22
Issue:16
Volume:19
Page:10619-10642
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Zhao Xiaoyi, Griffin DeboraORCID, Fioletov VitaliORCID, McLinden ChrisORCID, Davies Jonathan, Ogyu Akira, Lee Sum Chi, Lupu AlexandruORCID, Moran Michael D., Cede Alexander, Tiefengraber Martin, Müller MoritzORCID
Abstract
Abstract. Pandora spectrometers can retrieve nitrogen dioxide
(NO2) vertical column densities (VCDs) via two viewing geometries:
direct Sun and zenith sky. The direct-Sun NO2 VCD measurements have
high quality (0.1 DU accuracy in clear-sky conditions) and do not rely on
any radiative transfer model to calculate air mass factors (AMFs); however,
they are not available when the Sun is obscured by clouds. To perform
NO2 measurements in cloudy conditions, a simple but robust NO2
retrieval algorithm is developed for Pandora zenith-sky measurements. This
algorithm derives empirical zenith-sky NO2 AMFs from coincident
high-quality direct-Sun NO2 observations. Moreover, the retrieved
Pandora zenith-sky NO2 VCD data are converted to surface NO2
concentrations with a scaling algorithm that uses chemical-transport-model
predictions and satellite measurements as inputs. NO2 VCDs and surface
concentrations are retrieved from Pandora zenith-sky measurements made in
Toronto, Canada, from 2015 to 2017. The retrieved Pandora zenith-sky
NO2 data (VCD and surface concentration) show good agreement with both
satellite and in situ measurements. The diurnal and seasonal variations of
derived Pandora zenith-sky surface NO2 data also agree well with in
situ measurements (diurnal difference within ±2 ppbv). Overall, this
work shows that the new Pandora zenith-sky NO2 products have the
potential to be used in various applications such as future satellite
validation in moderate cloudy scenes and air quality monitoring.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference113 articles.
1. Adams, C., Strong, K., Zhao, X., Bassford, M. R., Chipperfield, M. P.,
Daffer, W., Drummond, J. R., Farahani, E. E., Feng, W., Fraser, A., Goutail,
F., Manney, G., McLinden, C. A., Pazmino, A., Rex, M., and Walker, K. A.:
Severe 2011 ozone depletion assessed with 11 years of ozone, NO2, and
OClO measurements at 80∘ N, Geophys. Res. Lett., 39, L05806,
https://doi.org/10.1029/2011gl050478, 2012. 2. Adams, C., Normand, E. N., McLinden, C. A., Bourassa, A. E., Lloyd, N. D., Degenstein, D. A., Krotkov, N. A., Belmonte Rivas, M., Boersma, K. F., and Eskes, H.: Limb-nadir matching using non-coincident NO2 observations: proof of concept and the OMI-minus-OSIRIS prototype product, Atmos. Meas. Tech., 9, 4103–4122, https://doi.org/10.5194/amt-9-4103-2016, 2016. 3. Adams, C., Bourassa, A. E., McLinden, C. A., Sioris, C. E., von Clarmann, T., Funke, B., Rieger, L. A., and Degenstein, D. A.: Effect of volcanic aerosol on stratospheric NO2 and N2O5 from 2002–2014 as measured by Odin-OSIRIS and Envisat-MIPAS, Atmos. Chem. Phys., 17, 8063–8080, https://doi.org/10.5194/acp-17-8063-2017, 2017. 4. Akingunola, A., Makar, P. A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M. D., and Zheng, Q.: A chemical transport model study of plume-rise and particle size distribution for the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667–8688, https://doi.org/10.5194/acp-18-8667-2018, 2018. 5. Bey, I., Jacob, D. J., Yantosca, R. M., Logan, J. A., Field, B. D., Fiore,
A. M., Li, Q., Liu, H. Y., Mickley, L. J., and Schultz, M. G.: Global
modeling of tropospheric chemistry with assimilated meteorology: Model
description and evaluation, J. Geophys. Res., 106, 23073–23095,
https://doi.org/10.1029/2001JD000807, 2001.
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|