Aging of basalt volcanic systems and decreasing CO<sub>2</sub> consumption by weathering

Author:

Börker JanineORCID,Hartmann JensORCID,Romero-Mujalli GibranORCID,Li GaojunORCID

Abstract

Abstract. Basalt weathering is one of many relevant processes balancing the global carbon cycle via land–ocean alkalinity fluxes. The CO2 consumption by weathering can be calculated using alkalinity and is often scaled with runoff and/or temperature. Here, it is tested if the surface age distribution of a volcanic system derived by geological maps is a useful proxy for changes in alkalinity production with time. A linear relationship between temperature normalized alkalinity fluxes and the Holocene area fraction of a volcanic field was identified using information from 33 basalt volcanic fields, with an r2=0.93. This relationship is interpreted as an aging function and suggests that fluxes from Holocene areas are ∼10 times higher than those from old inactive volcanic fields. However, the cause for the decrease with time is probably a combination of effects, including a decrease in alkalinity production from material in the shallow critical zone as well as a decline in hydrothermal activity and magmatic CO2 contribution. The addition of fresh reactive material on top of the critical zone has an effect in young active volcanic settings which should be accounted for, too. A comparison with global models suggests that global alkalinity fluxes considering Holocene basalt areas are ∼60 % higher than the average from these models imply. The contribution of Holocene areas to the global basalt alkalinity fluxes is today however only ∼5 %, because identified, mapped Holocene basalt areas cover only ∼1 % of the existing basalt areas. The large trap basalt proportion on the global basalt areas today reduces the relevance of the aging effect. However, the aging effect might be a relevant process during periods of globally intensive volcanic activity, which remains to be tested.

Publisher

Copernicus GmbH

Subject

Earth-Surface Processes,Geophysics

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3