Is coccolithophore distribution in the Mediterranean Sea related to seawater carbonate chemistry?

Author:

Oviedo A. M.,Ziveri P.,Álvarez M.ORCID,Tanhua T.ORCID

Abstract

Abstract. The Mediterranean Sea is considered a "hot-spot" for climate change, being characterized by oligotrophic to ultra-oligotrophic waters and rapidly changing carbonate chemistry. Coccolithophores are considered a dominant phytoplankton group in these waters. As a marine calcifying organism they are expected to respond to the ongoing changes in seawater CO2 systems parameters. However, very few studies have covered the entire Mediterranean physiochemical gradients from the Strait of Gibraltar to the Eastern Mediterranean Levantine Basin. We provide here an updated state of knowledge of the coccolithophore distribution in the Mediterranean Sea and relate this to a broad set of in situ measured environmental variables. Samples were taken during the Meteor (M84/3) oceanographic cruise in April 2011, between 0–100 m water depth from 28 stations. Total diatom, dinoflagellate and silicoflagellate cell concentrations are also presented. Our results highlight the importance of seawater carbonate chemistry, especially CO32−, in unraveling the distribution of heterococcolithophores, the most abundant coccolithophore life phase. Holo- and hetero-coccolithophores respond differently to environmental factors. For instance, changes in heterococcolithophore assemblages were best linked to the combination of [CO32−], pH, and salinity (ρ = 0.57) although salinity might be not functionally related to coccolithophore assemblage distribution. Holococcolithophores, on the other hand, were preferentially distributed and showed higher species diversity in oligotrophic areas (Best fit, ρ = 0.32 for nutrients), thriving in nutrient depleted waters. Clustering of heterococcolithophores revealed three groups of species sharing more than 65% similarities. These clusters could be assigned to the eastern and western basins, and deeper layers (below 50 m), respectively. In addition, the species Gephyrocapsa oceanica, G. muellerae and Emiliania huxleyi morphotype B/C are spatially distributed together and trace the influx of Atlantic waters into the Mediterranean Sea. The results of the present work emphasize the importance of considering holo- and hetero-coccolithophores separately when analyzing changes in species assemblages and diversity. Our findings clearly show that coccolithophores are a dominant phytoplankton group in the entire Mediterranean Sea; they have life stages that are expected to respond differently to the variability in seawater carbonate chemistry and nutrient concentrations.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3