Detection of directivity in seismic site response from microtremor spectral analysis

Author:

Del Gaudio V.,Coccia S.,Wasowski J.,Gallipoli M. R.,Mucciarelli M.

Abstract

Abstract. Recent observations have shown that slope response to seismic shaking can be characterised by directional variations of a factor of 2–3 or larger, with maxima oriented along local topography features (e.g. maximum slope direction). This phenomenon appears influenced by slope material properties and has occasionally been detected on landslide-prone slopes, where a down-slope directed amplification could enhance susceptibility to seismically-induced landsliding. The exact conditions for the occurrence of directional amplification remain still unclear and the implementation of investigation techniques capable to reveal the presence of such phenomena is desirable. To this purpose we tested the applicability of a method commonly used to evaluate site resonance properties (Horizontal to Vertical Noise Ratio – HVNR or Nakamura's method) as reconnaissance technique for the identification of site response directivity. Measurements of the azimuthal variation of H/V spectral ratios (i.e. between horizontal and vertical component) of ambient microtremors were conducted in a landslide-prone study area of central Italy where a local accelerometric network had previously provided evidence of directivity phenomena on some slopes. The test results were compared with average H/V spectral ratios obtained for low-to-moderate earthquakes recorded by the accelerometric stations. In general, noise and seismic recordings provided different amplitudes of spectral ratios at similar frequencies, likely because of differences in signal and instrument characteristics. Nevertheless, both kinds of recordings showed that at sites affected by site response directivity major H/V peaks have orientations consistent (within 20°–30°) with the direction of maximum shaking energy. Therefore, HVNR appears to be a promising technique for identifying seismic response directivity. Furthermore, in a comparative test conducted on a slope mantled in part by a deep-seated landslide we detected spectral peaks with orientations close to the maximum slope direction, whereas no evidence of directivity was found outside the slide boundaries. This indicates the influence of the landslide body on seismic response directivity.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference18 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3