Stochastic analysis of geo-electric field singularities as seismically correlated candidates

Author:

Konstantaras A.,Fouskitakis G. N.,Makris J. P.,Vallianatos F.

Abstract

Abstract. The study of the Earth's electromagnetic field prior to the occurrence of strong seismic events has repeatedly revealed cases where transient electric potential anomalies, often deemed as possible earthquake precursors, were observed on electromagnetic field recordings. In an attempt to understand the nature of such signals, several models have been proposed based upon the exhibited characteristics of the observed anomalies, often supported by different mathematical models simulating possible generation mechanisms. This paper discusses a candidate Electric Earthquake Precursor (EEP) signal, accompanying the Kythira Mw=6.9 earthquake in Greece (occurred on 8 January 2006). Neuro-Fuzzy along with stochastic models are currently incorporated for the modelling and analysis of the recorded Earth's electric field. The results of the study indicate that the Neuro-Fuzzy model treats the observed possible EEP signal as an external additive component to the recorded Earth's electric field, while the stochastic TARMA models accurately represent the recorded electric signals in both the time and the frequency domains. The complementary findings of both methodologies might potentially contribute to the future development of a more accurate and generalized framework for the efficient recognition and characterization of possible EEP's.

Publisher

Copernicus GmbH

Subject

General Earth and Planetary Sciences

Reference32 articles.

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3