Abstract
Abstract. In the far south of the Canadian Arctic Archipelago (CAA), on the Meta Incognita Peninsula (Baffin Island, Nunavut, Canada), the small Grinnell and Terra Nivea ice caps have received little attention compared to the much larger ice masses further north. Their evolution can, however, give valuable information about the impact of the recent Arctic warming at lower latitudes (i.e. 62.5° N). In this paper, we measure historical and recent rates of area, elevation and mass changes of both ice caps using in-situ, airborne and spaceborne datasets. Results show that the Terra Nivea Ice Cap (TNIC) areal extent has decreased by 34% since the late 50s, while the Grinnell Ice Cap (GIC) extent was reduced by 20% since 1952. For both ice caps, rates of area reduction accelerated at the beginning of the 21st century. The glacier-wide mass balance for the GIC was −0.37 ± 0.21 m a−1 water equivalent (w.e.) for the 1952–2014 period, and −0.47 ± 0.16 m a−1 w.e. on the TNIC for the 1958/59–2014 period. More recently, the TNIC has experienced an accelerated rate of mass loss of −1.68 ± 0.36 m a−1 w.e. between 2007 and 2014. This rate is 5.6 times as negative when compared to the 1958/59–2007 period (−0.30 ± 0.19 m a−1 w.e.) and 2 times as negative when compared to the mass balance of other glaciers in the southern parts of Baffin Island over the 2003–2009 period. A similar acceleration in mass loss is suspected for the GIC, given the calculated elevation changes and the proximity.
Reference57 articles.
1. Andrews, J. T., Holdsworth, G., and Jacobs, J. D.: Glaciers of the Arctic Islands. Glaciers of Baffin Island, USGS Professional Paper 1386-J-1, J162–J198, 2002.
2. Astrium: Pléiades Imagery User Guide, Airbus Defence and Space, Geo-Information Services, Toulouse, 2012.
3. Barrand, N. E., Murray, T., James, T. D., Barr, S. L., and Mills, J. P.: Instruments and methods optimizing photogrammetric DEMs for glacier volume change assessment using laser-scanning derived ground-control points, J. Glaciol., 55, 106–116, 2009.
4. Beaulieu, A. and Clavet, D.: Accuracy assessment of Canadian digital elevation data using ICESat, Photogramm. Eng. Rem. S., 75, 81–86, 2009.
5. Berthier, E. and Toutin, T.: SPOT5-HRS digital elevation models and the monitoring of glacier elevation changes in North-West Canada and South-East Alaska, Remote Sens. Environ., 112, 2443–2454, https://doi.org/10.1016/j.rse.2007.11.004, 2008.