Abstract
Abstract. Lidar-assisted control (LAC) of wind turbines is a control concept that takes advantage of a nacelle-mounted lidar (a remote sensing device) to measure upstream wind speeds of a turbine to allow a preview of the incoming turbulence. Because the turbine will not be exposed to the identical turbulence as that measured by the lidar in advance, the simulation of a LAC system will be more realistic if wind evolution can be modeled in the wind field generation. Since the commonly used 3D stochastic wind field generation method does not include wind evolution, the main goal of this research is to extend the 3D method to 4D to enable the modeling of wind evolution along the wind direction. The most novel part of this research is that we propose a two-step Cholesky decomposition approach for the factorization of the coherence matrices in the wind field generation. With this approach, 4D wind fields can be generated by combining multiple statistically independent 3D wind fields. To enable better integration of the 4D method into the common workflow of wind turbine simulations, we implement the 4D method as the open-access tool evoTurb in combination with TurbSim and Mann turbulence generator. Moreover, since 4D wind field generation is supposed to be coupled with lidar simulations, and considering the range weighting effect of lidars and eventually multiple range gates, a 4D wind field will contain many more simulation points than a 3D one. To avoid excessive computational effort, we further investigate the impacts of the spatial discretization in 4D wind fields on lidar simulations to provide some insights to optimize the application of 4D wind field generation.
Funder
Horizon 2020 Framework Programme
Subject
Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment
Reference48 articles.
1. Banakh, V. and Smalikho, I.: Estimation of the turbulence energy dissipation
rate from the pulsed Doppler lidar data, J. Atmos. Ocean.
Tech., 10, 957–965, 1994. a
2. Bartlett, M. S.: Smoothing periodograms from time-series with continuous
spectra, Nature, 161, 686–687, https://doi.org/10.1038/161686a0, 1948. a
3. Bos, R.: Extreme gusts and their role in wind turbine design, Dissertation,
Delft University of Technology,
https://doi.org/10.4233/uuid:d6097e3a-1cdd-4845-a71c-90f469d28b7a,
2017. a, b
4. Bossanyi, E.: Un-freezing the turbulence: Application to LiDAR-assisted wind
turbine control, IET Renew. Power Gen., 7, 321–329,
https://doi.org/10.1049/iet-rpg.2012.0260, 2013. a, b
5. Bossanyi, E. A., Kumar, A., and Hugues-Salas, O.: Wind turbine control
applications of turbine-mounted LIDAR, J. Phys.-Conf. Ser.,
555, 012011, https://doi.org/10.1088/1742-6596/555/1/012011, 2014. a, b
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献