Changes in detrital sediment supply to the central Yellow Sea since the last deglaciation

Author:

Koo Hyo Jin,Cho Hyen Goo

Abstract

Abstract. The sediment supply to the central Yellow Sea since the last deglaciation was uncovered through clay mineralogy and geochemical analysis of core 11YS-PCL14 in the Central Yellow Sea Mud (CYSM). The core can be divided into four units based on the various proxies, such as grain size, clay mineralogy, geochemistry, and Sr and Nd isotopes: Unit 4 (700–520 cm; 15.5–14.8 ka), Unit 3 (520–310 cm; 14.8–12.8 ka), Unit 2 (310–130 cm; 12.8–8.8 ka), and Unit 1 (130–0 cm; <8.8 ka). Unit 2 is subdivided into two subunits, Unit 2-2 (310–210 cm; 12.8–10.5 ka) and Unit 2-1 (210–130 cm; 10.5–8.8 ka), according to smectite content. Comparison of the clay mineral compositions, rare earth elements, and εNd indicate distinct provenance shifts in core 11YS-PCL14. Moreover, the integration of clay mineralogical and geochemical indices show different origins according to particle size. During the late last deglaciation (Units 3 and 4, 15.5–12.8 ka), Unit 4 sediments originated from all potential provenance rivers, such as the Huanghe, Changjiang, and western Korean rivers, while the source of coarse sediments changed to the Huanghe beginning with Unit 3. Fine-grained sediment was still supplied from all rivers during the deposition of Unit 3. Early Holocene (Unit 2) sediments were characterized by oscillating grain size, clay minerals, and moderate εNd values. In this period, the dominant fine-sediment provenance changed from the Huanghe to the Changjiang, whereas coarse sediments most likely originated from western Korean rivers. The Unit 1 CYSM sediments were sourced primarily from the Changjiang, along with minor contributions from the western Korean rivers. Possible transport mechanisms concerning such changes in the sediment provenance include paleo-river pathways, tidal stress evolution, and the development of the Yellow Sea Warm Current and coastal circulation systems, depending on the sea level fluctuations.

Funder

National Research Foundation of Korea

Korea Polar Research Institute

Publisher

Copernicus GmbH

Subject

Cell Biology,Developmental Biology,Embryology,Anatomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3