Author:
Katsafados P.,Papadopoulos A.,Korres G.,Varlas G.
Abstract
Abstract. It is commonly accepted that there is a need for a better understanding of the factors that contribute to air–sea interactions and their feedbacks. In this context it is important to develop advanced numerical prediction systems that treat the atmosphere and the ocean as a unified system. The realistic description and understanding of the exchange processes near the ocean surface requires knowledge of the sea state and its evolution. This can be achieved by considering the sea surface and the atmosphere as a continuously cross-talking dynamic system. Following and adapting concepts already developed and implemented in large-scale numerical weather models and in hurricane simulations, this study aims to present the effort towards developing a new, high-resolution, two-way fully coupled atmosphere–ocean wave model in order to support both operational and research activities. A specific issue that is emphasized is the determination and parameterization of the air–sea momentum fluxes in conditions of extremely high and time-varying winds. Software considerations, data exchange as well as computational and scientific performance of the coupled system, the so-called WEW (worketa-wam), are also discussed. In a case study of a high-impact weather and sea-state event, the wind–wave parameterization scheme reduces the resulted wind speed and the significant wave height as a response to the increased aerodynamic drag over rough sea surfaces. Overall, WEW offers a more realistic representation of the momentum exchanges in the ocean wind–wave system and includes the effects of the resolved wave spectrum on the drag coefficient and its feedback on the momentum flux.
Reference40 articles.
1. Battisti, D. S.: Dynamics and thermodynamics of a warming event in a coupled
tropical atmosphere-ocean model, J. Atmos. Sci., 45, 2889–2919, 1988.
2. Bidlot, J. R.: Present status of wave forecasting at ECMWF. Proceeding
from the ECMWF Workshop on Ocean Waves, 25–27 June 2012, ECMWF, Reading,
United Kingdom, 2012.
3. Breivik, Ø., Mogensen, K., Bidlot, J.-R., Balmaseda, M. A., and
Janssen, P. A. E. M.: Surface wave effects in the NEMO ocean model: Forced and coupled
experiments, J. Geophys. Res. Ocean., 120, 2973–2992, https://doi.org/10.1002/2014JC010565.
4. Cavaleri, L. and Sclavo, M.: Characteristics of quadrant and octant
advection schemes in wave models, Coastal Eng., 34, 221–242,
1998.
5. Chai, T. and Draxler, R. R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.
Cited by
34 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献