Impact of boundary conditions on the modeled thermal regime of the Antarctic ice sheet
-
Published:2024-03-11
Issue:3
Volume:18
Page:1139-1155
-
ISSN:1994-0424
-
Container-title:The Cryosphere
-
language:en
-
Short-container-title:The Cryosphere
Author:
Park In-WooORCID, Jin Emilia KyungORCID, Morlighem MathieuORCID, Lee Kang-Kun
Abstract
Abstract. A realistic initialization of ice flow models is critical for predicting future changes in ice sheet mass balance and their associated contribution to sea level rise. The initial thermal state of an ice sheet is particularly important, as it controls ice viscosity and basal conditions, thereby influencing the overall ice velocity. Englacial and subglacial conditions, however, remain poorly understood due to insufficient direct measurements, which complicate the initialization and validation of thermal models. Here, we investigate the impact of using different geothermal heat flux (GHF) datasets and vertical velocity profiles on the thermal state of the Antarctic ice sheet and compare our modeled temperatures to in situ measurements from 15 boreholes. We find that the temperature profile is more sensitive to vertical velocity than to GHF. The basal temperature of grounded ice and the amount of basal melting are influenced by both selection of GHF and vertical velocity. More importantly, we find that the standard approach, which consists of combining basal sliding speed and incompressibility to derive vertical velocities, provides reasonably good results in fast-flow regions (ice velocity >50 m yr−1) but performs poorly in slow-flow regions (ice velocity <50 m yr−1). Furthermore, the modeled temperature profiles in ice streams, where bed geometry is generated using a mass conservation approach, show better agreement with observed borehole temperatures compared to kriging-based bed geometry.
Funder
Ministry of Oceans and Fisheries National Science Foundation
Publisher
Copernicus GmbH
Reference98 articles.
1. Alley, K. E., Scambos, T. A., Siegfried, M. R., and Fricker, H. A.: Impacts of Warm Water on Antarctic Ice Shelf Stability through Basal Channel Formation, Nat. Geosci., 9, 290–293, https://doi.org/10.1038/ngeo2675, 2016. a 2. Alley, R. B., Anandakrishnan, S., Bentley, C. R., and Lord, N.: A Water-Piracy Hypothesis for the Stagnation of Ice Stream C, Antarctica, Ann. Glaciol., 20, 187–194, https://doi.org/10.3189/1994AoG20-1-187-194, 1994. a, b, c 3. An, M., Wiens, D. A., Zhao, Y., Feng, M., Nyblade, A., Kanao, M., Li, Y., Maggi, A., and Lévêque, J.: Temperature, Lithosphere‐asthenosphere Boundary, and Heat Flux beneath the Antarctic Plate Inferred from Seismic Velocities, J. Geophys. Res.-Sol. Ea., 120, 8720–8742, 2015 (data available at: http://www.seismolab.org/model/antarctica/lithosphere/index.html, last access: 20 February 2024). a, b, c 4. Anker, P. G. D., Makinson, K., Nicholls, K. W., and Smith, A. M.: The BEAMISH Hot Water Drill System and Its Use on the Rutford Ice Stream, Antarctica, Ann. Glaciol., 62, 233–249, https://doi.org/10.1017/aog.2020.86, 2021. a 5. Aschwanden, A., Bueler, E., Khroulev, C., and Blatter, H.: An Enthalpy Formulation for Glaciers and Ice Sheets, J. Glaciol., 58, 441–457, https://doi.org/10.3189/2012JoG11J088, 2012. a, b
|
|