A soil moisture monitoring network to characterize karstic recharge and evapotranspiration at five representative sites across the globe

Author:

Berthelin Romane,Rinderer MichaelORCID,Andreo Bartolomé,Baker AndyORCID,Kilian Daniela,Leonhardt Gabriele,Lotz Annette,Lichtenwoehrer Kurt,Mudarra MatíasORCID,Padilla Ingrid Y.,Pantoja Agreda Fernando,Rosolem RafaelORCID,Vale Abel,Hartmann AndreasORCID

Abstract

Abstract. Karst systems are characterized by a high subsurface heterogeneity, and their complex recharge processes are difficult to characterize. Experimental methods to study karst systems mostly focus on analysing the entire aquifer. Despite their important role in recharge processes, the soil and epikarst receive limited attention, and the few available studies were performed at sites of similar latitudes. In this paper, we describe a new monitoring network that allows for the improvement of the understanding of soil and epikarst processes by including different karst systems with different land-cover types in different climate regions. Here, we present preliminary data form the network and elaborate on their potential to answer research questions about the role of soil and epikarst on karstic water flow and storage. The network measures soil moisture at multiple points and depths to understand the partitioning of rainfall into infiltration, evapotranspiration, and groundwater recharge processes. We installed soil moisture probes at five different climate regions: Puerto Rico (tropical), Spain (Mediterranean), the United Kingdom (humid oceanic), Germany (humid mountainous), and Australia (dry semi-arid). At each of the five sites, we defined two 20 m×20 m plots with different land-use types (forest and grassland). At each plot, 15 soil moisture profiles were randomly selected and probes at different depths from the topsoil to the epikarst (in total over 400 soil moisture probes) were installed. Covering the spatio-temporal variability of flow processes through a large number of profiles, our monitoring network will allow researchers to develop a new conceptual understanding of evapotranspiration and groundwater recharge processes in karst regions across different climate regions and land-use types, and this will provide the base for quantitative assessment with physically based modelling approaches in the future.

Publisher

Copernicus GmbH

Subject

Atmospheric Science,Geology,Oceanography

Reference67 articles.

1. Aley, T. J. and Kirkland S. L.: Down but Not Straight down: Significance of Lateral Flow in the Vadose Zone of Karst Terrains, Carbonate. Evaporite., 27, 193–98, https://doi.org/10.1007/s13146-012-0106-5, 2012.

2. Anderson, S., Brantley, S., Derry, L., Dietrich, W., Grant, G., Hart, S., Kumar, P., Lohse, K., McDowell, W., McIntosh, J., Moloch, N., Papanicolaou, T., Richardson, J., Richter, D., Riebe, C., Russo, T., Seyfried, M., Thompson, S., and White, T.: A Strategy for Advancing Critical Zone Science, CZO Strategy Meeting, Boulder, 3–5 February 2016, Colorado, 2016.

3. Bakalowicz, M.: Karst groundwater: a challenge for new resources, Hydrogeol. J., 13, 148–160, https://doi.org/10.1007/s10040-004-0402-9, 2005.

4. Behrensmeyer, A. K., Darmuth, J. D., DiMichele, W. A., Pots, R., Sues, H. D., and Wing, S. L.: Terrestrial Ecosystems through Time, Chicago, IL, The University of Chicago Press, 1992.

5. Beinroth, F. H, Engel, R. J., Lugo, J. L., Santiago, C. L., Ríos, S., and Brannon, G. R.: Updated Taxonomic Classification of the Soils of Puerto Rico, 2002, Bull. 303, Univ. Puerto Rico, Agric. Experiment Station, Río Piedras, P.R., 2003.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3