The influence of biomass burning on the global distribution of selected non-methane organic compounds

Author:

Lewis A. C.,Evans M. J.ORCID,Hopkins J. R.ORCID,Punjabi S.,Read K. A.,Purvis R. M.,Andrews S. J.,Moller S. J.,Carpenter L. J.,Lee J. D.ORCID,Rickard A. R.,Palmer P. I.ORCID,Parrington M.ORCID

Abstract

Abstract. Forests fires are a significant source of chemicals to the atmosphere including numerous non-methane organic compounds (NMOCs). We report airborne measurement of hydrocarbons, acetone and methanol from >500 whole air samples collected over Eastern Canada, including interceptions of several different boreal biomass burning plumes. From these and concurrent measurements of carbon monoxide (CO) we derive fire emission ratios for 29 different organic species relative to the emission of CO. These range from 8.9 ± 3.2 ppt ppb−1 CO for methanol to 0.007 ± 0.004 ppt ppb−1 CO for cyclopentane. The ratios are in good to excellent agreement with literature values. Using the GEOS-Chem global 3-D chemical transport model (CTM) we show the influence of biomass burning on the global distributions of benzene, toluene, ethene and propene (species which are controlled for air quality purposes and sometimes used as indicative tracers of anthropogenic activity). Using our observationally derived emission ratios and the GEOS-Chem CTM, we show that biomass burning can be the largest fractional contributor to observed benzene, toluene, ethene and propene levels in many global locations. The widespread biomass burning contribution to atmospheric benzene, a heavily regulated air pollutant, suggests that pragmatic approaches are needed when setting air quality targets as tailpipe and solvent emissions decline in developed countries. We subsequently determine the extent to which the 28 global-status World Meteorological Organisation – Global Atmosphere Watch stations worldwide are influenced by biomass burning sourced benzene, toluene, ethene and propene as compared to their exposure to anthropogenic emissions.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

Reference62 articles.

1. Akagi, S. K., Yokelson, R. J., Wiedinmyer, C., Alvarado, M. J., Reid, J. S., Karl, T., Crounse, J. D., and Wennberg, P. O.: Emission factors for open and domestic biomass burning for use in atmospheric models, Atmos. Chem. Phys., 11, 4039–4072, https://doi.org/10.5194/acp-11-4039-2011, 2011.

2. Amiro, B. D., Cantin, A., Flannigan, M. D., and de Groot, W. J.: Future emissions from Canadian boreal forest fires, Can. J. For. Res., 39, 383–395, 2009.

3. Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, https://doi.org/10.1029/2000GB001382, 2001.

4. AQEG: Air quality and climate change: a UK perspective. Report of the UK Air Quality Expert Group, AQEG. Prepared for the Department for Environment Food and Rural Affairs, the Scottish Executive, the Welsh Assembly and the Department of the Environment in Northern Ireland, Defra publications, London, April 2007. ISBN 0-85521-172-5, 2007.

5. Atkinson, R.: Gas-phase tropospheric chemistry of organic compounds, J. Phys. Chem. Ref. Data, Monogr., 2, 216–234, 1994.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3