Light-absorbing carbon in Europe – measurement and modelling, with a focus on residential wood combustion emissions
-
Published:2013-09-03
Issue:17
Volume:13
Page:8719-8738
-
ISSN:1680-7324
-
Container-title:Atmospheric Chemistry and Physics
-
language:en
-
Short-container-title:Atmos. Chem. Phys.
Author:
Genberg J., Denier van der Gon H. A. C.ORCID, Simpson D.ORCID, Swietlicki E.ORCID, Areskoug H., Beddows D., Ceburnis D., Fiebig M.ORCID, Hansson H. C., Harrison R. M.ORCID, Jennings S. G., Saarikoski S., Spindler G., Visschedijk A. J. H., Wiedensohler A., Yttri K. E., Bergström R.ORCID
Abstract
Abstract. The atmospheric concentration of elemental carbon (EC) in Europe during the six-year period 2005–2010 has been simulated with the EMEP MSC-W model. The model bias compared to EC measurements was less than 20% for most of the examined sites. The model results suggest that fossil fuel combustion is the dominant source of EC in most of Europe but that there are important contributions also from residential wood burning during the cold seasons and, during certain episodes, also from open biomass burning (wildfires and agricultural fires). The modelled contributions from open biomass fires to ground level concentrations of EC were small at the sites included in the present study, <3% of the long-term average of EC in PM10. The modelling of this EC source is subject to many uncertainties, and it was likely underestimated for some episodes. EC measurements and modelled EC were also compared to optical measurements of black carbon (BC). The relationships between EC and BC (as given by mass absorption cross section, MAC, values) differed widely between the sites, and the correlation between observed EC and BC is sometimes poor, making it difficult to compare results using the two techniques and limiting the comparability of BC measurements to model EC results. A new bottom-up emission inventory for carbonaceous aerosol from residential wood combustion has been applied. For some countries the new inventory has substantially different EC emissions compared to earlier estimates. For northern Europe the most significant changes are much lower emissions in Norway and higher emissions in neighbouring Sweden and Finland. For Norway and Sweden, comparisons to source-apportionment data from winter campaigns indicate that the new inventory may improve model-calculated EC from wood burning. Finally, three different model setups were tested with variable atmospheric lifetimes of EC in order to evaluate the model sensitivity to the assumptions regarding hygroscopicity and atmospheric ageing of EC. The standard ageing scheme leads to a rapid transformation of the emitted hydrophobic EC to hygroscopic particles, and generates similar results when assuming that all EC is aged at the point of emission. Assuming hydrophobic emissions and no ageing leads to higher EC concentrations. For the more remote sites, the observed EC concentration was in between the modelled EC using standard ageing and the scenario treating EC as hydrophobic. This could indicate too-rapid EC ageing in the model in relatively clean parts of the atmosphere.
Publisher
Copernicus GmbH
Subject
Atmospheric Science
Reference83 articles.
1. Aas, W., Tsyro, S., Bieber, E., Bergström, R., Ceburnis, D., Ellermann, T., Fagerli, H., Frölich, M., Gehrig, R., Makkonen, U., Nemitz, E., Otjes, R., Perez, N., Perrino, C., Prévôt, A. S. H., Putaud, J.-P., Simpson, D., Spindler, G., Vana, M., and Yttri, K. E.: Lessons learnt from the first EMEP intensive measurement periods, Atmos. Chem. Phys., 12, 8073–8094, https://doi.org/10.5194/acp-12-8073-2012, 2012. 2. Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006. 3. Arnott, W. P., Moosmüller, H., Rogers, C. F., Jin, T., and Bruch, R.: Photoacoustic spectrometer for measuring light absorption by aerosol: instrument description, Atmos. Environ., 33, 2845–2852, https://doi.org/10.1016/s1352-2310(98)00361-6, 1999. 4. Arnott, W. P., Moosmüller, H., Sheridan, P. J., Ogren, J. A., Raspet, R., Slaton, W. V., Hand, J. L., Kreidenweis, S. M., and Collett Jr., J. L.: Photoacoustic and filter-based ambient aerosol light absorption measurements: Instrument comparisons and the role of relative humidity, J. Geophys. Res., 108, 4034, https://doi.org/10.1029/2002JD002165, 2003. 5. Aurela, M., Saarikoski, S., Timonen, H., Aalto, P., Keronen, P., Saarnio, K., Teinilä, K., Kulmala, M., and Hillamo, R.: Carbonaceous aerosol at a forested and an urban background sites in Southern Finland, Atmos. Environ., 45, 1394–1401, https://doi.org/10.1016/j.atmosenv.2010.12.039, 2011.
Cited by
49 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|