Characterization of ultrafine particle number concentration and new particle formation in an urban environment of Taipei, Taiwan

Author:

Cheung H. C.,Chou C. C.-K.,Huang W.-R.,Tsai C.-Y.

Abstract

Abstract. An intensive aerosol characterization experiment was performed at the Taipei Aerosol and Radiation Observatory (TARO, 25.02° N, 121.53° E) in the urban area of Taipei, Taiwan, during July 2012. Number concentration and size distribution of aerosol particles were measured continuously, which were accompanied by concurrent measurements of mass concentration of submicron particles, PM1 (d ≤ 1 μm), and photolysis rate of ozone, J(O1D). The averaged number concentrations of total (Ntotal), accumulation mode (Nacu), Aitken mode (NAitken), and nucleation mode (Nnuc) particles were 13.9 × 103 cm−3, 1.2 × 103 cm−3, 6.1 × 103 cm−3, and 6.6 × 103 cm−3, respectively. Accordingly, the ultrafine particles (UFPs, d ≤ 100 nm) accounted for 91% of the total number concentration of particles measured in this study (10 ≤ d ≤ 429 nm), indicating the importance of UFPs to the air quality and radiation budget in Taipei and its surrounding areas. An averaged Nnuc / NOx ratio of 192.4 cm−3 ppbv−1 was derived from nighttime measurements, which was suggested to be the characteristic of vehicle emissions that contributed to the "urban background" of nucleation mode particles throughout a day. On the contrary, it was found that the number concentration of nucleation mode particles was independent of NOx and could be elevated up to 10 times of the "urban background" levels during daytime, suggesting a substantial amount of nucleation mode particles produced from photochemical processes. Averages (± 1σ) of the diameter growth rate (GR) and formation rate of nucleation mode particles, J10, were 11.9 ± 10.6 nm h−1 and 6.9 ± 3.0 cm−3 s−1, respectively. Consistency in the time series of the nucleation mode particle concentration and the proxy of H2SO4 production, UVB · SO2/CS, for new particle formation (NPF) events suggested that photooxidation of SO2 was likely one of the major mechanisms for the formation of new particles in our study area. Moreover, it was revealed that the particle growth rate correlated exponentially with the photolysis of ozone, implying that the condensable vapors were produced mostly from photooxidation reactions. In addition, this study also revealed that Nnuc exhibited a quadratic relationship with J10. The quadratic relationship was inferred as a result of aerosol dynamics and featured NPF processes in urban areas.

Publisher

Copernicus GmbH

Subject

Atmospheric Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3