Combined use of stable isotopes and fallout radionuclides as soil erosion indicators in a forested mountain site, South Korea
Author:
Meusburger K.,Mabit L.,Park J.-H.,Sandor T.,Alewell C.
Abstract
Abstract. The aim of this study is to assess and to validate the suitability of the stable nitrogen and carbon isotope signature as soil erosion indicators in a mountain forest site in South Korea. Our approach is based on the comparison of the isotope signature of "stable" landscape positions (reference sites), which are neither affected by erosion nor deposition, with eroding sites. For undisturbed soils we expect that the enrichment of δ15N and δ13C with soil depth, due to fractionation during decomposition, goes in parallel with a decrease in nitrogen and carbon content. Soil erosion processes potentially weaken this correlation. 137Cs-method and the Revised Universal Soil Loss Equation are applied for the soil erosion quantification. The erosion rates obtained with the 137Cs method range from 0.9 t ha−1 yr−1 to 7 t ha−1 yr−1. Considering the steep slopes of up to 40° and the erosive monsoon events (R-factor of 6600 MJ mm ha−1 h−1 yr−1), the rates are plausible and within the magnitude of the RUSLE- modelled soil erosion rates, varying from 0.02 t ha−1 yr−1 to 5.1 t ha−1 yr−1. The soil profiles of the reference sites showed significant (p < 0.0001) correlations between nitrogen and carbon content and its corresponding δ15N and δ13C signatures. In contrast, for the eroding sites this relationship was weaker and for the carbon not significant. These results verify the usefulness of the stable carbon isotope signature as qualitative indicator for soil disturbance. We could show further that the δ15N isotope signature can be used similarly for uncultivated sites. We thus propose that the stable δ15N and δ13C signature of soil profiles could serve as a tool confirming the accurate choice of the reference site in soil erosion studies using the 137Cs-method.
Publisher
Copernicus GmbH
Reference59 articles.
1. Ågren, G. I., Bosatta, E., and Balesdent, J.: Isotope discrimination during decomposition of organic matter: A theoretical analysis, Soil Sci. Soc. Am. J., 60, 1121–1126, 1996. 2. Alewell, C., Meusburger, K., Brodbeck, M., and Bänninger, D.: Methods to describe and predict soil erosion in mountain regions, Landscape Urban Plan., 88, 46–53, 2008. 3. Alewell, C., Giesler, R., Klaminder, J., Leifeld, J., and Rollog, M.: Stable carbon isotopes as indicators for environmental change in palsa peats, Biogeosciences, 8, 1769–1778, https://doi.org/10.5194/bg-8-1769-2011, 2011. 4. Arnhold, S., Lindner, S., Leeb, B., Martin, E., Kettering, J., Seo, B., Nguyen, T. T., Koellner, T., Sik Ok, Y., and Huwe, B.: Conventional and organic farming: Soil erosion and conservation potential for row crop cultivation, T. ASABE, submitted, 2013. 5. Balesdent, J., Girardin, C., and Mariotti, A.: Site related δ13C of tree leaves and soil organic matter in a temperate forest, Ecology, 74, 1713–1721, 1993.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|