Land-use perturbations in ley grassland decouple the degradation of ancient soil organic matter from the storage of newly derived carbon inputs

Author:

Panettieri Marco,Courtier-Murias DenisORCID,Rumpel Cornelia,Dignac Marie-France,Almendros Gonzalo,Chabbi Abad

Abstract

Abstract. In a context of global change, soil has been identified as a potential carbon (C) sink, depending on land-use strategies. To detect the trends in carbon stocks after the implementation of new agricultural practices, early indicators, which can highlight changes in short timescales, are required. This study proposes the combined use of stable isotope probing and chemometrics applied to solid-state 13C nuclear magnetic resonance (NMR) spectra to unveil the dynamics of the storage and mineralization of soil carbon (C) pools. We focused on light organic matter fractions isolated by density fractionation of soil water stable aggregates because they respond faster to changes in land use than the total soil organic matter (SOM). Samples were collected from an agricultural field experiment with grassland, continuous maize cropping, and ley grassland under temperate climate conditions. Our results indicated contrasting aggregate dynamics depending on land-use systems. Under our experimental conditions, grassland returns larger amounts of C as belowground inputs than maize cropping, evidencing a different distribution of light C fractions between aggregate classes. Coarse aboveground inputs from maize contributed mostly to larger macroaggregates. Land-use changes with the introduction of ley grassland provoked a decoupling of the storage and/or degradation processes after the grassland phase. The newly derived maize inputs were barely degraded during the first 3 years of maize cropping, whereas grassland-derived material was depleted. As a whole, results suggest large microbial proliferation as shown by 13C NMR under permanent grassland, then reduced within the first years after the land-use conversion, and finally restored. The study highlighted a fractal structure of the soil, determining a scattered spatial distribution of the cycles of storage and degradation of soil organic matter related to detritusphere dynamics. As a consequence, vegetal inputs from a new land use are creating new detritusphere microenvironments that may be disconnected from the dynamics of C cycle of the previous land use. The formation of those different and unconnected microenvironments may explain the observed legacy effect of the previous land use, since each microenvironment type contributes separately to the overall soil C cycle. The effects of the new land use on the soil C cycle are delayed until the different detritusphere microenvironments remain unconnected, and the ones from the previous land use represent the predominant microenvironment type. Increasing knowledge of the soil C dynamics at a fine scale will be helpful in refining the prediction models and land-use policies.

Funder

European Commission

Publisher

Copernicus GmbH

Subject

Soil Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3