High-accuracy current measurement with low-cost shunts by means of dynamic error correction

Author:

Weßkamp PatrickORCID,Melbert Joachim

Abstract

Abstract. Measurement of electrical current is often performed by using shunt resistors. Thermal effects due to self-heating and ambient temperature variation limit the achievable accuracy, especially if low-cost shunt resistors with increased temperature coefficients are utilized. In this work, a compensation method is presented which takes static and dynamic temperature drift effects into account and provides a significant reduction of measurement error. A thermal model of the shunt resistor setup is derived for this purpose and a suitable calibration method is developed. The correction algorithm is based upon a digital filter bank and is optimized for microcontrollers with low computational complexity. It is implemented in laboratory test equipment for long-term studies on automotive lithium-ion cells. For a 600 A current pulse, it reduces the measurement error from 2 % to less than 0.1 %. Measurements with a real-life testing profile show a reduction of remaining measurement error by 60 %. Statistical results for 100 test systems and long-term drift measurements prove the reliability of the method. The proposed dynamic error correction algorithm therefore allows high measurement accuracy despite the use of low-cost shunt resistors.

Publisher

Copernicus GmbH

Subject

Electrical and Electronic Engineering,Instrumentation

Reference12 articles.

1. Bagnoli, P. E., Casarosa, C., Ciampi, M., and Dallago, E.: Thermal resistance analysis by induced transient (TRAIT) method for power electronic devices thermal characterization. I. Fundamentals and theory, IEEE T. Power Electr., 13, 1208–1219, https://doi.org/10.1109/63.728348, 1998.

2. Grundkötter, E.: Untersuchung des transienten thermischen Verhaltens von Shuntwiderständen zur Strommessung und Optimierung von Fehlerkorrekturverfahren, Masterarbeit, Ruhr-Universität Bochum, Bochum, 2016.

3. Lohmann, N., Weßkamp, P., Haußmann, P., Melbert, J., and Musch, T.: Electrochemical impedance spectroscopy for lithium-ion cells: Test equipment and procedures for aging and fast characterization in time and frequency domain, J. Power Sources, 273, 613–623, https://doi.org/10.1016/j.jpowsour.2014.09.132, 2015.

4. März, M. and Nance, P.: Thermal Modeling of Power-electronic Systems, available at: http://www.iisb.fraunhofer.de/content/dam/iisb2014/en/Documents/Research-Areas/Energy_Electronics/publications_patents_downloads/Publications/Therm_Modelling_2000_IISB.pdf (last access: 2 November 2016), 2000.

5. Proakis, J. G. and Manolakis, D. G.: Digital signal processing, Pearson Education, Upper Saddle River, NJ, 4th ed., 1084 pp., ISBN-10: 0-13-187374-1, 2007.

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3