An evaluation of the LLC4320 global-ocean simulation based on the submesoscale structure of modeled sea surface temperature fields

Author:

Gallmeier KatharinaORCID,Prochaska J. Xavier,Cornillon PeterORCID,Menemenlis DimitrisORCID,Kelm MadolynORCID

Abstract

Abstract. We have assembled 2 851 702 nearly cloud-free cutout images (sized 144 km × 144 km) of sea surface temperature (SST) data from the entire 2012–2020 Level-2 Visible Infrared Imaging Radiometer Suite (VIIRS) dataset to perform a quantitative comparison to the ocean model output from the MIT General Circulation Model (MITgcm). Specifically, we evaluate outputs from the LLC4320 (LLC, latitude–longitude–polar cap) 148∘ global-ocean simulation for a 1-year period starting on 17 November 2011 but otherwise matched in geography and the day of the year to the VIIRS observations. In lieu of simple (e.g., mean, standard deviation) or complex (e.g., power spectrum) statistics, we analyze the cutouts of SST anomalies with an unsupervised probabilistic autoencoder (PAE) trained to learn the distribution of structures in SST anomaly (SSTa) on ∼ 10–80 km scales (i.e., submesoscale to mesoscale). A principal finding is that the LLC4320 simulation reproduces, over a large fraction of the ocean, the observed distribution of SSTa patterns well, both globally and regionally. Globally, the medians of the structure distributions match to within 2σ for 65 % of the ocean, despite a modest, latitude-dependent offset. Regionally, the model outputs reproduce mesoscale variations in SSTa patterns revealed by the PAE in the VIIRS data, including subtle features imprinted by variations in bathymetry. We also identify significant differences in the distribution of SSTa patterns in several regions: (1) in an equatorial band equatorward of 15∘; (2) in the Antarctic Circumpolar Current (ACC), especially in the eastern half of the Indian Ocean; and (3) in the vicinity of the point at which western boundary currents separate from the continental margin. It is clear that region 3 is a result of premature separation in the simulated western boundary currents. The model output in region 2, the southern Indian Ocean, tends to predict more structure than observed, perhaps arising from a misrepresentation of the mixed layer or of energy dissipation and stirring in the simulation. The differences in region 1, the equatorial band, are also likely due to model errors, perhaps arising from the shortness of the simulation or from the lack of high-frequency and/or wavenumber atmospheric forcing. Although we do not yet know the exact causes for these model–data SSTa differences, we expect that this type of comparison will help guide future developments of high-resolution global-ocean simulations.

Funder

Office of Naval Research

National Aeronautics and Space Administration

National Science Foundation

Publisher

Copernicus GmbH

Subject

General Medicine

Reference36 articles.

1. Arbic, B. K., Alford, M. H., Ansong, J. K., Buijsman, M. C., Ciotti, R. B., Farrar, J. T., Hallberg, R. W., Henze, C. E., Hill, C. N., Luecke, C. A., Menemenlis, D., Metzger, E. J., Müeller, M., Nelson, A. D., Nelson, B. C., Ngodock, H. E., Ponte, R. M., Richman, J. G., Savage, A. C., Scott, R. B., Shriver, J. F., Simmons, H. L., Souopgui, I., Timko, P. G., Wallcraft, A. J., Zamudio, L., and Zhao, Z.: A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm, in: New Frontiers in Operational Oceanography, edited by: Chassignet, E. P., Pascual, A., Tintoré, J., and Verron, J., Chap. 13, GODAE OceanView, 307–392, https://doi.org/10.17125/gov2018.ch13, 2018. a, b

2. Arbic, B. K., Elipot, S., Brasch, J. M., Menemenlis, D., Ponte, A. L., Shriver, J. F., Yu, X., Zaron, E. D., Alford, M. H., Buijsman, M. C., Abernathey, R., Garcia, D., Guan, L., Martin, P. E., and Nelson, A. D.: Near‐Surface Oceanic Kinetic Energy Distributions From Drifter Observations and Numerical Models, J. Geophys. Res.-Oceans, 127, 1–30, https://doi.org/10.1029/2022JC018551, 2022. a

3. Bryan, K.: Michael Cox (1941–1989): His Pioneering Contributions to Ocean Circulation, J. Phys. Oceanogr., 21, 1259–1270, 1991. a

4. Böhm, V. and Seljak, U.: Probabilistic Auto-Encoder, ArXiv [preprint], https://doi.org/10.48550/arXiv.2006.05479, 2020. a

5. Cheng, S. and Ménard, B.: How to quantify fields or textures? A guide to the scattering transform, arXiv [preprint], https://doi.org/10.48550/arXiv.2112.01288, 2021. a

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3