Synergy between compost and cover crops in a Mediterranean row crop system leads to increased subsoil carbon storage
Author:
Rath Daniel, Bogie Nathaniel, Deiss Leonardo, Parikh Sanjai J., Wang DaoyuanORCID, Ying Samantha, Tautges Nicole, Berhe Asmeret AsefawORCID, Ghezzehei Teamrat A.ORCID, Scow Kate M.
Abstract
Abstract. Subsoil carbon (C) stocks are a prime target for efforts to increase soil C storage for climate change mitigation. However, subsoil C dynamics are not well understood, especially in soils under long-term intensive agricultural management. We compared subsoil C storage and soil organic matter (SOM) composition in tomato–corn rotations after 25 years of differing C and nutrient management in the California Central Valley: CONV (mineral fertilizer), CONV+WCC (mineral fertilizer and cover crops), and ORG (composted poultry manure and cover crops). The cover crop mix used in these systems is a mix of oat (Avena sativa L.), faba bean (Vicia faba L.), and hairy vetch (Vicia villosa Roth). Our results showed a ∼19 Mg ha−1 increase in soil organic C (SOC) stocks down to 1 m under ORG systems, no significant SOC increases under CONV+WCC or CONV systems, and an increased abundance of carboxyl-rich C in the subsoil (60–100 cm) horizons of ORG and CONV+WCC systems. Our results show the potential for increased subsoil C storage with compost and cover crop amendments in tilled agricultural systems and identify potential pathways for increasing C transport and storage in subsoil layers.
Funder
Office of the President, University of California
Publisher
Copernicus GmbH
Reference149 articles.
1. Angst, G., Messinger, J., Greiner, M., Häusler, W., Hertel, D., Kirfel, K., Kögel-Knabner, I., Leuschner, C., Rethemeyer, J., and Mueller, C. W.: Soil organic carbon stocks in topsoil and subsoil controlled by parent material, carbon input in the rhizosphere, and microbial-derived compounds, Soil Biol. Biochem., 122, 19–30, https://doi.org/10.1016/j.soilbio.2018.03.026, 2018. 2. Aquino, A. J. A., Tunega, D., Schaumann, G. E., Haberhauer, G., Gerzabek, M. H., and Lischka, H.: The functionality of cation bridges for binding polar groups in soil aggregates, Int. J. Quantum Chem., 111, 1531–1542, https://doi.org/10.1002/qua.22693, 2011. 3. Baes, A. U. and Bloom, P. R.: Diffuse reflectance Fourier transform infrared (DRIFT) of humic and fulvic acids, Soil Sci. Soc. Am. J., 53, 695–700, https://doi.org/10.2136/sssaj1989.03615995005300030008x, 1989. 4. Banfield, C. C., Dippold, M. A., Pausch, J., Hoang, D. T. T., and Kuzyakov, Y.: Biopore history determines the microbial community composition in subsoil hotspots, Biol. Fert. Soils, 53, 573–588, https://doi.org/10.1007/S00374-017-1201-5, 2017. 5. Bernal, B., McKinley, D. C., Hungate, B. A., White, P. M., Mozdzer, T. J., and Megonigal, J. P.: Limits to soil carbon stability; Deep, ancient soil carbon decomposition stimulated by new labile organic inputs, Soil Biol. Biochem., 98, 85–94, https://doi.org/10.1016/J.SOILBIO.2016.04.007, 2016.
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|