Effects of ocean acidification on calcification of symbiont-bearing reef foraminifers
-
Published:2011-08-04
Issue:8
Volume:8
Page:2089-2098
-
ISSN:1726-4189
-
Container-title:Biogeosciences
-
language:en
-
Short-container-title:Biogeosciences
Author:
Fujita K.,Hikami M.,Suzuki A.,Kuroyanagi A.,Sakai K.,Kawahata H.,Nojiri Y.
Abstract
Abstract. Ocean acidification (decreases in carbonate ion concentration and pH) in response to rising atmospheric pCO2 is generally expected to reduce rates of calcification by reef calcifying organisms, with potentially severe implications for coral reef ecosystems. Large, algal symbiont-bearing benthic foraminifers, which are important primary and carbonate producers in coral reefs, produce high-Mg calcite shells, whose solubility can exceed that of aragonite produced by corals, making them the "first responder" in coral reefs to the decreasing carbonate saturation state of seawater. Here we report results of culture experiments performed to assess the effects of ongoing ocean acidification on the calcification of symbiont-bearing reef foraminifers using a high-precision pCO2 control system. Living clone individuals of three foraminiferal species (Baculogypsina sphaerulata, Calcarina gaudichaudii, and Amphisorus hemprichii) were subjected to seawater at five pCO2 levels from 260 to 970 μatm. Cultured individuals were maintained for about 12 weeks in an indoor flow-through system under constant water temperature, light intensity, and photoperiod. After the experiments, the shell diameter and weight of each cultured specimen were measured. Net calcification of B. sphaerulata and C. gaudichaudii, which secrete a hyaline shell and host diatom symbionts, increased under intermediate levels of pCO2 (580 and/or 770 μatm) and decreased at a higher pCO2 level (970 μatm). Net calcification of A. hemprichii, which secretes a porcelaneous shell and hosts dinoflagellate symbionts, tended to decrease at elevated pCO2. Observed different responses between hyaline and porcelaneous species are possibly caused by the relative importance of elevated pCO2, which induces CO2 fertilization effects by algal symbionts, versus associated changes in seawater carbonate chemistry, which decreases a carbonate concentration. Our findings suggest that ongoing ocean acidification might favor symbiont-bearing reef foraminifers with hyaline shells at intermediate pCO2 levels (580 to 770 μatm) but be unfavorable to those with either hyaline or porcelaneous shells at higher pCO2 levels (near 1000 μatm).
Publisher
Copernicus GmbH
Subject
Earth-Surface Processes,Ecology, Evolution, Behavior and Systematics
Reference47 articles.
1. Barker, S. and Elderfield, H.: Foraminiferal calcification response to glacial-interglacial changes in atmospheric CO2, Science, 297, 833–836, https://doi.org/10.1126/science.1072815, 2002. 2. Bentov, S., Brownlee, C., and Erez, J.: The role of seawater endocytosis in the biomineralization process in calcareous foraminifera, P. Natl. Acad. Sci. USA, 106, 21500–21504, https://doi.org/10.1073/pnas.0906636106, 2009. 3. Bijma, J., Spero, H., and Lea, D.: Reassessing foraminiferal stable isotope geochemistry: impact of the oceanic carbonate system (experimental results), in: Use of Proxies in Paleoceanography: Examples from the South Atlantic, edited by: Fischer, G. and Wefer, G., Springer-Verlag, Berlin, Heidelberg, Germany, 489–512, 1999. 4. Bijma, J., Honisch, B., and Zeebe, R.: Impact of the ocean carbonate chemistry on living foraminiferal shell weight: comment on "Carbonate ion concentration in glacial-age deepwaters of the Caribbean Sea", edited by: W. S. Broecker and E. Clark, Geochem. Geophys. Geosyst., 3, 1064, 2002. 5. de Moel, H., Ganssen, G. M., Peeters, F. J. C., Jung, S. J. A., Kroon, D., Brummer, G. J. A., and Zeebe, R. E.: Planktic foraminiferal shell thinning in the Arabian Sea due to anthropogenic ocean acidification?, Biogeosciences, 6, 1917–1925, https://doi.org/10.5194/bg-6-1917-2009, 2009.
Cited by
92 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
|
|