Multiple-scattering effects on single-wavelength lidar sounding of multi-layered clouds

Author:

Shcherbakov Valery,Szczap Frédéric,Mioche GuillaumeORCID,Cornet Céline

Abstract

Abstract. We performed Monte Carlo simulations of single-wavelength lidar signals from multi-layered clouds with special attention focused on the multiple-scattering (MS) effect in regions of the cloud-free molecular atmosphere (i.e. between layers or outside a cloud system). Despite the fact that the strength of lidar signals from the molecular atmosphere is much lower compared to the in-cloud intervals, studies of MS effects in such regions are of interest from scientific and practical points of view. The MS effect on lidar signals always decreases with the increasing distance from the cloud far edge. The decrease is the direct consequence of the fact that the forward peak of particle phase functions is much larger than the receiver field of view (RFOV). Therefore, the photons scattered within the forward peak escape the sampling volume formed by the RFOV (i.e. the escape effect). We demonstrated that the escape effect is an inherent part of MS properties within the free atmosphere beyond the cloud far edge. In the cases of the ground-based lidar, the MS contribution is lower than 5 % within the regions of the cloud-free molecular atmosphere with a distance from the cloud far edge of about 1 km or higher. In the cases of the space-borne lidar, the rate of decrease of the MS contribution is so slow that the threshold of 5 % can hardly be reached. In addition, the effect of non-uniform beam filling is extremely strong. Therefore, practitioners should employ, with proper precautions, lidar data from regions below the cloud base when treating data of a space-borne lidar. In the case of two-layered cloud, the distance of 1 km is sufficiently large so that the scattered photons emerging from the first layer do not affect signals from the second layer when we are dealing with the ground-based lidar. In contrast, signals from the near edge of the second cloud layer are severely affected by the photons emerging from the first layer in the case of a space-borne lidar. We evaluated the Eloranta model (EM) in extreme conditions and showed its good performance in the cases of ground-based and space-borne lidars. At the same time, we revealed the shortcoming that can affect practical applications of the EM. Namely, values of the key parameters – i.e. the ratios of phase functions in the backscatter direction for the nth-order-scattered photon and a singly scattered photon – depend not only on the particle phase function but also on the distance from a lidar to the cloud and the receiver field of view. Those ratios vary within a quite large range, and the MS contribution to lidar signals can be largely overestimated or underestimated if erroneous values of the ratios are assigned to the EM.

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3