Evaluation of the hyperspectral radiometer (HSR1) at the Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site

Author:

Balmes Kelly A.ORCID,Riihimaki Laura D.ORCID,Wood John,Flynn Connor,Theisen AdamORCID,Ritsche Michael,Ma Lynn,Hodges Gary B.,Herrera ChristianORCID

Abstract

Abstract. The Peak Design Ltd hyperspectral radiometer (HSR1) was tested at the Atmospheric Radiation Measurement (ARM) user facility Southern Great Plains (SGP) site in Lamont, Oklahoma, for 2 months from May to July 2022. The HSR1 is a prototype instrument that measures total (Ftotal) and diffuse (Fdiffuse) spectral irradiance from 360 to 1100 nm with a spectral resolution of 3 nm. The HSR1 spectral irradiance measurements are compared to nearby collocated spectral radiometers, including two multifilter rotating shadowband radiometers (MFRSRs) and the Shortwave Array Spectroradiometer–Hemispheric (SASHe) radiometer. The Ftotal at 500 nm for the HSR1 compared to the MFRSRs has a mean (relative) difference of 0.01 W m−2 nm−1 (1 %–2 %). The HSR1 mean Fdiffuse at 500 nm is smaller than the MFRSRs' by 0.03–0.04 (10 %) W m−2 nm−1. The HSR1 clear-sky aerosol optical depth (AOD) is also retrieved by considering Langley regressions and compared to collocated instruments such as the Cimel sunphotometer (CSPHOT), MFRSRs, and SASHe. The mean HSR1 AOD at 500 nm is larger than the CSPHOT's by 0.010 (8 %) and larger than the MFRSRs' by 0.007–0.017 (6 %–18 %). In general, good agreement between the HSR1 and other instruments is found in terms of the Ftotal, Fdiffuse, and AODs at 500 nm. The HSR1 quantities are also compared at other wavelengths to the collocated instruments. The comparisons are within ∼ 10 % for the Ftotal and Fdiffuse, except for 940 nm, where there is relatively larger disagreement. The AOD comparisons are within ∼ 10 % at 415 and 440 nm; however, a relatively larger disagreement in the AOD comparison is found for higher wavelengths.

Funder

U.S. Department of Energy

Publisher

Copernicus GmbH

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3