Pico-Light H2O: intercomparison of in situ water vapour measurements during the AsA 2022 campaign

Author:

Ghysels Mélanie,Durry Georges,Amarouche Nadir,Hurst DaleORCID,Hall EmrysORCID,Xiong Kensy,Dupont Jean-Charles,Samake Jean-Christophe,Frérot Fabien,Bejjani RaghedORCID,Riviere Emmanuel D.

Abstract

Abstract. The mid-infrared lightweight tunable diode laser hygrometer, “Pico-Light H2O”, the successor to Pico-SDLA H2O, is presented and its performances are evaluated during the AsA 2022 balloon-borne intercomparison campaign conducted at the CNES Aire-sur-l'Adour (AsA, 43.70° N; 0.25° W) balloon launch facility and the Aeroclub d'Aire-sur-l'Adour in France. The Pico-Light instrument has primarily been developed for sounding of the upper troposphere and stratosphere, although during the AsA 2022 campaign we expand the range of comparison to include additionally the lower troposphere. Three different types of hygrometer and two models of radiosonde were flown, operated by the French Space Agency (CNES) and the NOAA Global Monitoring Laboratory (GML) scientific teams: Pico-Light H2O, the NOAA Frost Point Hygrometer (FPH), the micro-hygrometer (in an early phase of development), and M20 and iMet-4 sondes. Within this framework, we intend to validate measurements of Pico-Light H2O through a first intercomparison with the NOAA FPH instrument. The in situ monitoring of water vapour in the upper troposphere–lower stratosphere continues to be very challenging from an instrumental point of view because of the very small amounts of water vapour to be measured in these regions of the atmosphere. Between the lapse rate tropopause (11–12.3 km) and 20 km, the mean relative difference between water vapour mixing ratio measurements by Pico-Light H2O and NOAA FPH was 4.2 % ± 7.7 %, and the mean tropospheric difference was 3.84 % ± 23.64 %, with differences depending on the altitude range considered. In the troposphere, relative humidity (RH) over water comparisons led to agreement between Pico-Light and NOAA FPH of −0.2 % on average, with excursions of about 30 % RH due to moisture variability. Expanding the comparison to meteorological sondes, the iMet-4 sondes agree well with both Pico-Light and FPH between the ground and 7.5 km (within ± 3 % RH), as do the M20 sondes, up to 13 km, which are wet-biased by 3 % RH and dry-biased by 20 % in cases of saturation.

Funder

H2020 Research Infrastructures

Publisher

Copernicus GmbH

Reference55 articles.

1. Banerjee, A., Chiodo, G., Previdi, M., Ponater, M., Conley, A. J., and Polvani, L. M.: Stratospheric water vapor: an important climate feedback, Clim. Dynam., 53, 1697–1710, https://doi.org/10.1007/s00382-019-04721-4, 2019.

2. Behera, A. K., Rivière, E. D., Marécal, V., Rysman, J.-F., Chantal, C., Sèze, G., Amarouche, N., Ghysels, M., Khaykin, S. M., Pommereau, J.-P., Held, G., Burgalat, J., and Durry, G.: Modeling the TTL at Continental Scale for a Wet Season: An Evaluation of the BRAMS Mesoscale Model Using TRO-Pico Campaign, and Measurements From Airborne and Spaceborne Sensors, J. Geophys. Res.-Atmos., 123, 2491–2508, https://doi.org/10.1002/2017JD027969, 2018.

3. Berthet, G., Renard, J.-B., Ghysels, M., Durry, G., Gaubicher, B., and Amarouche, N.: Balloon-borne observations of mid-latitude stratospheric water vapour: comparisons with HALOE and MLS satellite data, J. Atmos. Chem., 70, 197–219, https://doi.org/10.1007/s10874-013-9264-7, 2013.

4. Buchholz, B., Afchine, A., Klein, A., Schiller, C., Krämer, M., and Ebert, V.: HAI, a new airborne, absolute, twin dual-channel, multi-phase TDLAS-hygrometer: background, design, setup, and first flight data, Atmos. Meas. Tech., 10, 35–57, https://doi.org/10.5194/amt-10-35-2017, 2017.

5. Delahaye, T., Ghysels, M., Hodges, J. T., Sung, K., Armante, R., and Tran, H.: Measurement and Modeling of Air-Broadened Methane Absorption in the MERLIN Spectral Region at Low Temperatures, J. Geophys. Res.-Atmos., 124, 3556–3564, https://doi.org/10.1029/2018JD028917, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3